共查询到20条相似文献,搜索用时 19 毫秒
1.
N-Methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, initiates excision repair of several N-alkylpurine adducts, deaminated and lipid peroxidation-induced purine adducts. MPG from human and mouse has previously been cloned and expressed. However, due to the poor expression level in Escherichia coli (E. coli) and multi-step purification process of full-length MPG, most successful attempts have been limited by extremely poor yield and stability. Here, we have optimized the codons within the first five residues of human MPG (hMPG) to the best used codons for E. coli and expressed full-length hMPG in large amounts. This high expression level in conjunction with a strikingly high isoelectric point (9.65) of hMPG, in fact, helped purify the enzyme in a single step. A previously well-characterized monoclonal antibody having an epitope in the N-terminal tail could detect this codon-optimized hMPG protein. Surface plasmon resonance studies showed an equilibrium binding constant (KD) of 0.25 nM. Steady-state enzyme kinetics showed an apparent Km of 5.3 nM and kcat of 0.2 min−1 of MPG for the hypoxanthine (Hx) cleavage reaction. Moreover, hMPG had an optimal activity at pH 7.5 and 100 mM KCl. Unlike the previous reports by others, this newly purified full-length hMPG is appreciably stable at high temperature, such as 50 °C. Thus, this study indicates that this improved expression and purification system will facilitate large scale production and purification of a stable human MPG protein for further biochemical, biophysical and structure–function analysis. 相似文献
2.
N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a wide variety of alkylated, deaminated, and lipid peroxidation-induced purine adducts. MPG activity and other DNA glycosylases do not have an absolute requirement for a cofactor. In contrast, all downstream activities of major base excision repair proteins, such as apurinic/apyrimidinic endonuclease, DNA polymerase beta, and ligases, require Mg(2+). Here we have demonstrated that Mg(2+) can be significantly inhibitory toward MPG activity depending on its concentration but independent of substrate type. The pre-steady-state kinetics suggests that Mg(2+) at high but physiologic concentrations decreases the amount of active enzyme concentrations. Steady-state inhibition kinetics showed that Mg(2+) affected K(m), but not V(max), and the inhibition could be reversed by EDTA but not by DNA. At low concentration, Mg(2+) stimulated the enzyme activity only with hypoxanthine but not ethenoadenine. Real-time binding experiments using surface plasmon resonance spectroscopy showed that the pronounced inhibition of activity was due to inhibition in substrate binding. Nonetheless, the glycosidic bond cleavage step was not affected. These results altogether suggest that Mg(2+) inhibits MPG activity by abrogating substrate binding. Because Mg(2+) is an absolute requirement for the downstream activities of the major base excision repair enzymes, it may act as a regulator for the base excision repair pathway for efficient and balanced repair of damaged bases, which are often less toxic and/or mutagenic than their subsequent repair product intermediates. 相似文献
3.
Cloning and expression in Escherichia coli of a human cDNA encoding the DNA repair protein N-methylpurine-DNA glycosylase 总被引:12,自引:0,他引:12
D Chakravarti G C Ibeanu K Tano S Mitra 《The Journal of biological chemistry》1991,266(24):15710-15715
A 871-base pair cDNA encoding the human N-methylpurine-DNA glycosylase (MPG) was cloned from a HeLa S3 cDNA expression library in a pUC vector by phenotypic screening of MPG-negative (tag- alkA-) Escherichia coli cells exposed to methylmethane sulfonate. The active MPG is expressed as a 31-kDa fusion protein. The human cDNA-encoded MPG releases 3-methyladenine, 7-methylguanine, and 3-methylguanine from DNA and thus has a substrate range similar to that of the indigenous enzyme and the E. coli AlkA protein. The cDNA hybridizes with distinct restriction fragments of mammalian DNAs but not with E. coli or yeast DNA. A search in the GenBank data bank failed to show any other cloned DNA with a similar sequence. Although the human protein has 62% sequence homology with the corresponding rat enzyme, only a few amino acid residues are conserved between the human protein and the E. coli and yeast MPGs. However, a conserved glutamine residue in all MPGs that release 3-alkyladenine and an arginine residue in eukaryotic MPGs and E. coli AlkA that act additionally on N-alkylguanines suggest that these residues are involved in recognition of adenine and guanine adducts in DNA, respectively. Although the 1.1-kilobase mRNAs of MPG from human and rodents are similar in size, liver and cultured cells of rat have much lower levels of MPG mRNA than do human and mouse cells. A hamster cell line variant isolated as being resistant to methylmethane sulfonate does not have a higher level of MPG mRNA than the parent cell line. 相似文献
4.
P Fortini E Parlanti O M Sidorkina J Laval E Dogliotti 《The Journal of biological chemistry》1999,274(21):15230-15236
The base excision repair (BER) of modified nucleotides is initiated by damage-specific DNA glycosylases. The repair of the resulting apurinic/apyrimidinic site involves the replacement of either a single nucleotide (short patch BER) or of several nucleotides (long patch BER). The mechanism that controls the selection of either BER pathway is unknown. We tested the hypothesis that the type of base damage present on DNA, by determining the specific DNA glycosylase in charge of its excision, drives the repair of the resulting abasic site intermediate to either BER branch. In mammalian cells hypoxanthine (HX) and 1,N6-ethenoadenine (epsilonA) are both substrates for the monofunctional 3-methyladenine DNA glycosylase, the ANPG protein, whereas 7,8-dihydro-8-oxoguanine (8-oxoG) is removed by the bifunctional DNA glycosylase/beta-lyase 8-oxoG-DNA gly- cosylase (OGG1). Circular plasmid molecules containing a single HX, epsilonA, or 8-oxoG were constructed. In vitro repair assays with HeLa cell extracts revealed that HX and epsilonA are repaired via both short and long patch BER, whereas 8-oxoG is repaired mainly via the short patch pathway. The preferential repair of 8-oxoG by short patch BER was confirmed by the low efficiency of repair of this lesion by DNA polymerase beta-deficient mouse cells as compared with their wild-type counterpart. These data fit into a model where the intrinsic properties of the DNA glycosylase that recognizes the lesion selects the branch of BER that will restore the intact DNA template. 相似文献
5.
Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover 总被引:8,自引:0,他引:8 下载免费PDF全文
DNA glycosylases initiate base excision repair (BER) through the generation of potentially harmful abasic sites (AP sites) in DNA. Human thymine-DNA glycosylase (TDG) is a mismatch-specific uracil/thymine-DNA glycosylase with an implicated function in the restoration of G*C base pairs at sites of cytosine or 5-methylcytosine deamination. The rate-limiting step in the action of TDG in vitro is its dissociation from the product AP site, suggesting the existence of a specific enzyme release mechanism in vivo. We show here that TDG interacts with and is covalently modified by the ubiquitin-like proteins SUMO-1 and SUMO-2/3. SUMO conjugation dramatically reduces the DNA substrate and AP site binding affinity of TDG, and this is associated with a significant increase in enzymatic turnover in reactions with a G*U substrate and the loss of G*T processing activity. Sumoylation also potentiates the stimulatory effect of APE1 on TDG. These observations implicate a function of sumoylation in the controlled dissociation of TDG from the AP site and open up novel perspectives for the understanding of the molecular mechanisms coordinating the early steps of BER. 相似文献
6.
Vallur AC Feller JA Abner CW Tran RK Bloom LB 《The Journal of biological chemistry》2002,277(35):31673-31678
Human alkyladenine DNA glycosylase "flips" damaged DNA bases into its active site where excision occurs. Tyrosine 162 is inserted into the DNA helix in place of the damaged base and may assist in nucleotide flipping by "pushing" it. Mutating this DNA-intercalating Tyr to Ser reduces the DNA binding and base excision activities of alkyladenine DNA glycosylase to undetectable levels demonstrating that Tyr-162 is critical for both activities. Mutation of Tyr-162 to Phe reduces the single turnover excision rate of hypoxanthine by a factor of 4 when paired with thymine. Interestingly, when the base pairing partner for hypoxanthine is changed to difluorotoluene, which cannot hydrogen bond to hypoxanthine, single turnover excision rates increase by a factor of 2 for the wild type enzyme and about 3 to 4 for the Phe mutant. In assays with DNA substrates containing 1,N(6)-ethenoadenine, which does not form hydrogen bonds with either thymine or difluorotoluene, base excision rates for both the wild type and Phe mutant were unaffected. These results are consistent with a role for Tyr-162 in pushing the damaged base to assist in nucleotide flipping and indicate that a nucleotide flipping step may be rate-limiting for excision of hypoxanthine. 相似文献
7.
N-Methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, initiates excision repair of several N-alkylpurine adducts, induced by alkylating chemotherapeutics, and deaminated and lipid peroxidation-induced purine adducts. We have generated monoclonal antibodies (moAbs) against human MPG. Twelve independent hybridoma clones were characterized, which, except 520-16A, are identical based on epitope exclusion assay. Four moAbs, including 520-2A, 520-3A, 520-16A, and 520-26A, have high affinity (K(D) approximately 0.3-1.6nM), and their subtypes were IgG(2a), IgG(1), IgG(2a), and IgG(2b), respectively. moAb 520-3A recognizes the sequence (52)AQAPCPRERCLGPP(66)T, an epitope exclusively present in the N-terminal extension of human MPG. We found that moAb 520-3A significantly inhibited MPG's enzymatic activity towards different substrates, such as hypoxanthine, 1,N(6)ethenoadenine and methylated bases, which represent different classes of DNA damage, however, with different efficiencies. Real-time binding experiments using surface plasmon resonance (SPR) spectroscopy showed that the pronounced inhibition of activity was not in the substrate-binding step. Single turnover kinetics (STO) revealed that the inhibition was at the catalytic step. Since we found that this antibody has an epitope in the N-terminal tail, the latter appears to have an important role in substrate discrimination, however, with a differential effect on different substrates. 相似文献
8.
In recent years, significant progress has been made in determining the catalytic mechanisms by which base excision repair (BER) DNA glycosylases and glycosylase-abasic site (AP) lyases cleave the glycosyl bond. While these investigations have identified active site residues and active site architectures, few investigations have analyzed postincision turnover events. Previously, we identified a critical residue (His16) in the T4-pyrimidine dimer glycosylase (T4-Pdg) that, when mutated, interferes with enzyme turnover [Meador et al. (2004) J. Biol. Chem. 279, 3348-3353]. To test whether comparable residues and mechanisms might be operative for other BER glycosylase:AP-lyases, molecular modeling studies were conducted comparing the active site regions of T4-Pdg and the Escherichia coli formamidopyrimidine DNA glycosylase (Fpg). These analyses revealed that His71 in Fpg might perform a similar function to His16 in T4-Pdg. Site-directed mutagenesis of the Fpg gene and analyses of the reaction mechanism of the mutant enzyme revealed that the H71A enzyme retained activity on a DNA substrate containing an 8-oxo-7,8-dihydroguanine (8-oxoG) opposite cytosine and DNA containing an AP site. The H71A Fpg mutant was severely compromised in enzyme turnover on the 8-oxoG-C substrate but had turnover rates comparable to that of wild-type Fpg on AP-containing DNA. The similar mutant phenotypes for these two enzymes, despite a complete lack of structural or sequence homology between them, suggest a common mechanism for the rate-limiting step catalyzed by BER glycosylase:AP-lyases. 相似文献
9.
Most DNA glycosylases including N-methylpurine-DNA glycosylase (MPG), which initiate DNA base excision repair, have a wide substrate range of damaged or altered bases in duplex DNA. In contrast, uracil-DNA glycosylase (UDG) is specific for uracil and excises it from both single-stranded and duplex DNAs. Here we show by DNA footprinting analysis that MPG, but not UDG, bound to base-pair mismatches especially to less stable pyrimidine-pyrimidine pairs, without catalyzing detectable base cleavage. Thermal denaturation studies of these normal and damaged (e.g. 1,N(6)-ethenoadenine, varepsilonA) base mispairs indicate that duplex instability rather than exact fit of the flipped out damaged base in the catalytic pocket is a major determinant in the initial recognition of damage by MPG. Finally, based on our determination of binding affinity and catalytic efficiency we conclude that the initial recognition of substrate base lesions by MPG is dependent on the ease of flipping of the base from unstable pairs to a flexible catalytic pocket. 相似文献
10.
Recent data on structural and biochemical features of human 8-oxoguanine DNA glycosylase (hOGG1) has enabled detailed evaluation
of the mechanism by which the damaged DNA bases are recognized and eliminated from the chain. Pre-steady-state kinetic studies
with recording of conformational transitions of the enzyme and DNA substrate significantly contribute to understanding of
this mechanism. In this review we particularly focus on the interrelationship between the conformational changes of interacting
molecules and kinetics of their interaction and on the nature of each elementary step during the enzymatic process. Exhaustive
analysis of these data and detailed mechanism of hOGG1-catalyzed reaction are proposed. 相似文献
11.
Hardeland U Bentele M Jiricny J Schär P 《The Journal of biological chemistry》2000,275(43):33449-33456
Human thymine DNA glycosylase (TDG) was discovered as an enzyme that can initiate base excision repair at sites of 5-methylcytosine- or cytosine deamination in DNA by its ability to release thymine or uracil from G.T and G.U mismatches. Crystal structure analysis of an Escherichia coli homologue identified conserved amino acid residues that are critical for its substrate recognition/interaction and base hydrolysis functions. Guided by this revelation, we performed a mutational study of structure function relationships with the human TDG. Substitution of the postulated catalytic site asparagine with alanine (N140A) resulted in an enzyme that bound mismatched substrates but was unable to catalyze base removal. Mutation of Met-269 in a motif with a postulated role in protein-substrate interaction selectively inactivated stable binding of the enzyme to mismatched substrates but not so its glycosylase activity. These results establish that the structure function model postulated for the E. coli enzyme is largely applicable to the human TDG. We further provide evidence for G.U being the preferred substrate of TDG, not only at the mismatch recognition step of the reaction but also in base hydrolysis, and for the importance of stable complementary strand interactions by TDG to compensate for its comparably poor hydrolytic potential. 相似文献
12.
N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a variety of alkylated purine adducts. Although Asp was identified as the active site residue in various DNA glycosylases based on the crystal structure, Glu-125 in human MPG (Glu-145 in mouse MPG) was recently proposed to be the catalytic residue. Mutational analysis for all Asp residues in a truncated, fully active MPG protein showed that only Asp-152 (Asp-132 in the human protein), which is located near the active site, is essential for catalytic activity. However, the substrate binding was not affected in the inactive Glu-152, Asn-152, and Ala-152 mutants. Furthermore, mutation of Asp-152 did not significantly affect the intrinsic tryptophan fluorescence of the enzyme and the far UV CD spectra, although a small change in the near UV CD spectra of the mutants suggests localized conformational change in the aromatic residues. We propose that in addition to Glu-145 in mouse MPG, which functions as the activator of a water molecule for nucleophilic attack, Asp-152 plays an essential role either by donating a proton to the substrate base and, thus, facilitating its release or by stabilizing the steric configuration of the active site pocket. 相似文献
13.
Liu P Theruvathu JA Darwanto A Lao VV Pascal T Goddard W Sowers LC 《The Journal of biological chemistry》2008,283(14):8829-8836
The repair of the multitude of single-base lesions formed daily in cells of all living organisms is accomplished primarily by the base excision repair pathway that initiates repair through a series of lesion-selective glycosylases. In this article, single-turnover kinetics have been measured on a series of oligonucleotide substrates containing both uracil and purine analogs for the Escherichia coli mispaired uracil glycosylase (MUG). The relative rates of glycosylase cleavage have been correlated with the free energy of helix formation and with the size and electronic inductive properties of a series of uracil 5-substituents. Data are presented that MUG can exploit the reduced thermodynamic stability of mispairs to distinguish U:A from U:G pairs. Discrimination against the removal of thymine results primarily from the electron-donating property of the thymine 5-methyl substituent, whereas the size of the methyl group relative to a hydrogen atom is a secondary factor. A series of parameters have been obtained that allow prediction of relative MUG cleavage rates that correlate well with observed relative rates that vary over 5 orders of magnitude for the series of base analogs examined. We propose that these parameters may be common among DNA glycosylases; however, specific glycosylases may focus more or less on each of the parameters identified. The presence of a series of glycosylases that focus on different lesion properties, all coexisting within the same cell, would provide a robust and partially redundant repair system necessary for the maintenance of the genome. 相似文献
14.
The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1 总被引:2,自引:0,他引:2
Das A Boldogh I Lee JW Harrigan JA Hegde ML Piotrowski J de Souza Pinto N Ramos W Greenberg MM Hazra TK Mitra S Bohr VA 《The Journal of biological chemistry》2007,282(36):26591-26602
The mammalian DNA glycosylase, NEIL1, specific for repair of oxidatively damaged bases in the genome via the base excision repair pathway, is activated by reactive oxygen species and prevents toxicity due to radiation. We show here that the Werner syndrome protein (WRN), a member of the RecQ family of DNA helicases, associates with NEIL1 in the early damage-sensing step of base excision repair. WRN stimulates NEIL1 in excision of oxidative lesions from bubble DNA substrates. The binary interaction between NEIL1 and WRN (K(D) = 60 nM) involves C-terminal residues 288-349 of NEIL1 and the RecQ C-terminal (RQC) region of WRN, and is independent of the helicase activity WRN. Exposure to oxidative stress enhances the NEIL-WRN association concomitant with their strong nuclear co-localization. WRN-depleted cells accumulate some prototypical oxidized bases (e.g. 8-oxoguanine, FapyG, and FapyA) indicating a physiological function of WRN in oxidative damage repair in mammalian genomes. Interestingly, WRN deficiency does not have an additive effect on in vivo damage accumulation in NEIL1 knockdown cells suggesting that WRN participates in the same repair pathway as NEIL1. 相似文献
15.
Human alkyladenine DNA glycosylase (AAG) protects against alkylative and oxidative DNA damage, flipping damaged nucleotides out of double-stranded DNA and catalyzing the hydrolytic cleavage of the N-glycosidic bond to release the damaged nucleobase. The crystal structure of AAG bound to a DNA substrate reveals features of the active site that could discriminate between oxidatively damaged or alkylated purines and normal purines. A water molecule bound in the active site adjacent to the anomeric carbon of the N-glycosidic bond is suggestive of direct attack by water, with Glu125 acting as a general base. However, biochemical evidence for this proposed mechanism has been lacking. The structure also fails to explain why smaller pyrimidine nucleosides are excluded as substrates from this relatively permissive active site that catalyzes the excision of a structurally diverse group of damaged purine bases. We have used pH dependencies, site-directed mutagenesis, and a variety of substrates to investigate the catalytic mechanism of AAG. Single-turnover excision of hypoxanthine and 1,N(6)-ethenoadenine follows bell-shaped pH-rate profiles, indicating that AAG-catalyzed excision of these neutral lesions requires the action of both a general acid and a general base. In contrast, the pH-rate profile for the reaction of 7-methylguanine, a positively charged substrate, shows only a single ionization corresponding to a general base. These results suggest that AAG activates neutral lesions by protonation of the nucleobase leaving group. Glu125 must be deprotonated in the active form of the enzyme, consistent with a role as a general base that activates and positions a water nucleophile. Acid-base catalysis can account for much of the 10(8)-fold rate enhancement that is achieved by AAG in the excision of hypoxanthine. The prominent role of nucleobase protonation in catalysis by AAG provides a rationale for its specialization toward damaged purines while effectively excluding pyrimidines. 相似文献
16.
Meador MG Rajagopalan L Lloyd RS Dodson ML 《The Journal of biological chemistry》2004,279(5):3348-3353
Previously, the histidine residue at position 16 in the mature T4 pyrimidine dimer glycosylase (T4-PDG) protein has been suggested to be involved in general (non-target) DNA binding. This interpretation is likely correct, but, in and of itself, cannot account for the most dramatic phenotype of mutants at this position: their inability to restore ultraviolet light resistance to a DNA repair-deficient Escherichia coli strain. Accordingly, this residue has been mutated to serine, glutamic, aspartic acid, lysine, cysteine, and alanine. The mutant proteins were expressed, purified, and their abilities to carry out several functions of T4-PDG were assessed. The mutant proteins were able to perform most functions tested in vitro, albeit at reduced rates compared with the wild type protein. The most likely explanation for the biochemical phenotypes of the mutants is that the histidine residue is required for rapid turnover of the enzyme. This role is interpreted and discussed in the context of a reaction mechanism able to account for the complete spectrum of products generated by T4-PDG during a single turnover cycle. 相似文献
17.
Katrina L Tibballs Ole Herman Ambur Kristian Alfsnes H?vard Homberset Stephan A Frye Tonje Davidsen Tone T?njum 《BMC microbiology》2009,9(1):7
Background
Neisseria meningitidis, the causative agent of meningococcal disease, is exposed to high levels of reactive oxygen species inside its exclusive human host. The DNA glycosylase Fpg of the base excision repair pathway (BER) is a central player in the correction of oxidative DNA damage. This study aimed at characterizing the meningococcal Fpg and its role in DNA repair. 相似文献18.
Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1 下载免费PDF全文
Oxidative lesions account for much of the spontaneously occurring DNA damage in normal cells and, left unrepaired, can be mutagenic or cytotoxic. We have investigated the capacity of purified human enzymes to initiate the base excision repair (BER) of oxidative lesions in model nucleosomes. In a construct where the minor groove of a thymine glycol lesion faced outward from the histone octamer, the human DNA glycosylase NTH1 (hNTH1) processed the lesion with nearly the same efficiency as in naked DNA. The hNTH1 reaction did not generate free DNA, indicating that the first step in BER occurred without irreversibly disrupting nucleosomes. Instead, lesion processing entailed the formation of nucleosome-hNTH1 ternary complexes that could be visualized in a gel mobility shift assay. These complexes contained both processed and unprocessed DNA. hNTH1 processing of lesions whose minor groove faced toward the histone octamer was poor at low hNTH1 concentrations but increased substantially as hNTH1 concentrations increased to nearly physiological levels. Additionally, an inward-facing lesion near the nucleosome edge was more efficiently processed than one closer to the nucleosome dyad. These observations suggest that access to sterically occluded lesions entails the partial, reversible unwrapping of DNA from the histone octamer, allowing hNTH1 to capture its DNA substrate when it is in an unwound state. 相似文献
19.
Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair 总被引:7,自引:10,他引:7 下载免费PDF全文
8-Oxoguanine-DNA glycosylase 1 (OGG1), with intrinsic AP lyase activity, is the major enzyme for repairing 7,8-dihydro-8-oxoguanine (8-oxoG), a critical mutagenic DNA lesion induced by reactive oxygen species. Human OGG1 excised the damaged base from an 8-oxoG·C-containing duplex oligo with a very low apparent kcat of 0.1 min–1 at 37°C and cleaved abasic (AP) sites at half the rate, thus leaving abasic sites as the major product. Excision of 8-oxoG by OGG1 alone did not follow Michaelis–Menten kinetics. However, in the presence of a comparable amount of human AP endonuclease (APE1) the specific activity of OGG1 was increased ~5-fold and Michaelis–Menten kinetics were observed. Inactive APE1, at a higher molar ratio, and a bacterial APE (Nfo) similarly enhanced OGG1 activity. The affinity of OGG1 for its product AP·C pair (Kd ~ 2.8 nM) was substantially higher than for its substrate 8-oxoG·C pair (Kd ~ 23.4 nM) and the affinity for its final β-elimination product was much lower (Kd ~ 233 nM). These data, as well as single burst kinetics studies, indicate that the enzyme remains tightly bound to its AP product following base excision and that APE1 prevents its reassociation with its product, thus enhancing OGG1 turnover. These results suggest coordinated functions of OGG1 and APE1, and possibly other enzymes, in the DNA base excision repair pathway. 相似文献
20.
The base excision repair pathway removes damaged DNA bases and resynthesizes DNA to replace the damage. Human alkyladenine DNA glycosylase (AAG) is one of several damage-specific DNA glycosylases that recognizes and excises damaged DNA bases. AAG removes primarily damaged adenine residues. Human AP endonuclease 1 (APE1) recognizes AP sites produced by DNA glycosylases and incises the phophodiester bond 5' to the damaged site. The repair process is completed by a DNA polymerase and DNA ligase. If not tightly coordinated, base excision repair could generate intermediates that are more deleterious to the cell than the initial DNA damage. The kinetics of AAG-catalyzed excision of two damaged bases, hypoxanthine and 1,N6-ethenoadenine, were measured in the presence and absence of APE1 to investigate the mechanism by which the base excision activity of AAG is coordinated with the AP incision activity of APE1. 1,N6-ethenoadenine is excised significantly slower than hypoxanthine and the rate of excision is not affected by APE1. The excision of hypoxanthine is inhibited to a small degree by accumulated product, and APE1 stimulates multiple turnovers by alleviating product inhibition. These results show that APE1 does not significantly affect the kinetics of base excision by AAG. It is likely that slow excision by AAG limits the rate of AP site formation in vivo such that AP sites are not created faster than can be processed by APE1. 相似文献