首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
The ChlH gene coding the H subunit of magnesium chelatase, an enzyme involved in chlorophyll biosynthesis, was silenced in Nicotiana benthamiana plants by infection with tobacco mosaic virus vectors (pTMV-30b) containing 67, 214 or 549 nt long ChlH inserts. Silencing of the nuclear ChlH gene induced a chimeric phenotype with green and yellow/white leaves associated with alterations of chloroplast shape and ultrastructure. The symptoms became first evident around veins of young leaves, and only later in the mesophyll tissues. The efficiency of gene silencing was not dependent on the insert orientation, but was strongly correlated with the size of the ChlH insert, providing a flexible method to modulate the level of gene suppression. Silencing efficiency seemed to be strongly dependent on endogenous ChlH mRNA level of the target tissue. Silencing of the ChlH gene with the longest fragment of 549 nt also lowered the accumulation of ChlD and chlorophyll synthetase mRNAs, i.e. other genes involved in chlorophyll biosynthesis.  相似文献   

2.
It is generally accepted that viral systemic infection follows the source-to-sink symplastic pathway of sugar translocation. In plants that are classified as apoplastic loaders, the boundary between the companion cell-sieve element (CC-SE) complex and neighboring cells is symplastically restricted, and the potential passage of macromolecules between the two domains has yet to be explored. Transgenic tobacco plants expressing green fluorescence protein (GFP) and cucumber mosaic virus (CMV)-encoded proteins fused to GFP under the control of the fructose-1,6-bisphosphatase (FBPase) promoter were produced in order to localize the encoded proteins in mesophyll and bundle sheath cells and to explore the influence of viral infection on the functioning of plasmodesmata interconnecting the two domains. GFP produced outside the vascular tissue could overcome the symplastic barrier between the CC-SE complex and the surrounding cells to enter the vasculature in CMV-infected plants. Grafting of control (non-transgenic) tobacco scions to CMV-infected FBPase-GFP-expressing root stocks confirmed that GFP could move long distances in the phloem. No movement of the gfp mRNA was noticeable in this set of experiments. The ability of GFP to enter the vasculature and move long distances was also evident upon infection of the grafting plants with other viruses. These results provide experimental evidence for alteration of the functioning of plasmodesmata interconnecting the CC-SE complex and neighboring cells by viral infection to enable non-selective trafficking of macromolecules from the mesophyll into the sieve tube.  相似文献   

3.
Plant virus-based vectors carrying sequences homologous to endogenous genes trigger silencing through a homology-dependent RNA degradation mechanism. This phenomenon, called virus-induced gene silencing (VIGS), has potential as a powerful reverse-genetics tool in functional genomic programmes through transient, loss-of-function screens. Here, we describe a method to enhance the robustness of the VIGS phenotype by increasing the level of dsRNA molecule production, a critical step in the VIGS response. Incorporation of 40-60 base direct inverted-repeats into a plant viral vector generates RNA molecules that form dsRNA hairpins. A tobacco mosaic virus (TMV)-based vector carrying such inverted-repeats, homologous to a green fluorescent protein (gfp) transgene or an endogenous phytoene desaturase (pds) gene, generated a stronger and more pervasive VIGS phenotype than constructs carrying corresponding cDNA fragments in sense or antisense orientation. Real-time RT-PCR indicated that there was up to a threefold reduction in target mRNA accumulation in the tissues where VIGS was triggered by constructs carrying inverted-repeats compared to those where it was triggered by sense or antisense constructs. Moreover, an enhanced VIGS pds phenotype was observed using a different vector, based on barley stripe mosaic virus, in the monocotyledonous host barley. This demonstrates that VIGS can be significantly improved through the inclusion of small inverted-repeats in plant virus-based vectors, generating a more robust loss-of-function phenotype. This suggests that dsRNA formation can be a limiting factor in the VIGS phenomenon.  相似文献   

4.
Role of P30 in replication and spread of TMV   总被引:2,自引:1,他引:1  
The P30 movement protein (MP) of tobacco mosaic virus is essential for distribution of sites of replication within infected cells and for cell–cell spread of infection. MP is an integral membrane protein and in early and mid-stages of infection causes severe disruption of the cortical endoplasmic reticulum (ER). MP also associates with microtubules, and in late stages is targeted for degradation by the 26S proteosome. During these stages, the ER regains its normal pre-infection configuration. Viral RNA is associated with ER and microtubules in the presence of MP. The MP is phosphorylated and mutation of the phosphorylated amino acid reduced association of MP with the ER, plasmodesmata, and microtubules, and altered the stability of the MP. The nature of the association of MP with vRNA and ER and microtubules, and the role of phosphorylation of MP in each of these functions, if any, remains to be determined.  相似文献   

5.
6.
7.
Mutant tobacco plants deficient for class I beta-1,3-glucanase (GLU I) are decreased in their susceptibility to virus infection. This is correlated with delayed virus spread, a reduction in the size exclusion limit of plasmodesmata and increased cell-wall deposition of the beta-1,3-glucan callose. To further investigate a role of GLU I during cell-to-cell movement of virus infection, we inserted the GLU I coding sequence into TMV for overexpression in infected cells. Compared with the size of local lesions produced on plants infected with virus expressing either an enzymatically inactive GLU I or a frameshift mutant of the gene, the size of local lesions caused by infection with virus expressing active GLU I was consistently increased. Viruses expressing antisense GLU I constructs led to lesions of decreased size. Similar effects were obtained for virus spread using plants grown at 32 degrees C to block the hypersensitive response. Together, these results indicate that enzymatically active GLU I expressed in cells containing replicating virus can increase cell-to-cell movement of virus. This supports the view that GLU I induced locally during infection helps to promote cell-to-cell movement of virus by hydrolyzing callose. Moreover, our results provide the first direct evidence that a biological function of a plant beta-1,3-glucanase depends on its catalytic activity.  相似文献   

8.
We previously reported that one of the ethylene response factors (ERFs), NtERF3, and other members of the subgroup VIII‐a ERFs of the AP2/ERF family exhibit cell death‐inducing ability in tobacco leaves. In this study, we focused on the involvement of NtERF3 in a cell death signalling pathway in tobacco plants, particularly downstream of NtSIPK/NtWIPK and NtWRKY1, which are mitogen‐activated protein kinases and a phosphorylation substrate of NtSIPK, respectively. An ERF‐associated amphiphilic repression (EAR) motif‐deficient NtERF3b mutant (NtERF3bΔEAR) that lacked cell death‐inducing ability suppressed the induction of cell death caused by NtERF3a. The transient co‐expression of NtERF3bΔEAR suppressed the hypersensitive reaction (HR)‐like cell death induced by NtSIPK and NtWRKY1. The induction of cell death by NtSIPK and NtWRKY1 was also inhibited in transgenic plants expressing NtERF3bΔEAR. Analysis of gene expression, ethylene production and cell death symptoms in salicylic acid‐deficient tobacco plants suggested the existence of some feedback regulation in the HR cell death signalling pathway mediated by SIPK/WIPK and WRKY1. Overall, these results suggest that NtERF3 functions downstream of NtSIPK/NtWIPK and NtWRKY1 in a cell death signalling pathway, with some feedback regulation.  相似文献   

9.
Motif analysis among 30 EH1 and EH2 epoxide hydrolases from Solanaceaeous plants showed differences primarily in the lid region around the catalytic site. Based on in silico models of 3D structures, EH1 proteins lack a catalytic triad because of the orientation of one of the conserved lid tyrosines, while the orientation of that tyrosine in EH2 proteins fomed a catalytic triad inside a hydrophobic tunnel. Two similar EH2 protein genes from Nicotiana benthamiana, NbEH2.1 and NbEH2.2, have a predicted peroxisomal targeting sequence, catalytic triad, and structural similarities to a potato cutin monomer-synthesizing epoxide hydrolase. NbEH2.1 expression increased with infections by the hemibiotrophs, Colletotrichum destructivum, Colletotrichum orbiculare or Pseudomonas syringae pv. tabaci only during their biotrophic phases, while there was only a slight increase during the hypersensitive response to P. syringae pv. tabaci (avrPto). In contrast, among the four pathogens, NbEH2.2 expression increased only in response to P. syringae pv. tabaci. Virus-induced gene silencing of NbEH2.1 significantly affected only the interaction with C. destructivum, resulting in a delay in the appearance of necrosis that may be related to its biotrophic phase being restricted to single epidermal cells, which is unique among these pathogens. These results differed from that of a previously reported EH1 gene of N. benthamiana for these interactions, demonstrating specialization among EH genes in basal resistance.  相似文献   

10.
Recent studies have reported that decreased level of DNA cytosine methylation in the global genome was closely related to the initiation of tomato (Solanum lycopersicum) fruit ripening. However, genome-scale analysis of cytosine-5 DNA methyltransferases (C5-MTases) and demethylases in tomato has not been engaged. In this study, 7 C5-MTases and 3 demethylases were identified in tomato genome, which probably contributed to DNA cytosine methylation level in tomato. The 7 C5-MTases were categorized into 4 subgroups, and the 3 demethylases were classified into 2 subgroups based on phylogenetic analyses. Comprehensive analysis of their structure and genomic localization was also performed in this paper. According to online RNA-seq data, 4 S. lycopersicum C5-MTase (SlC5-MTase) genes (SlMET, SlDRM1L1, SlDRM5, SlMET3L) were expressed higher than others, and one DNA demethylase gene (SlDML) was significantly changed during tomato fruit development and ripening. Furthermore, all these five gene expressions at breaker (BK) stage changed with 1-methylcyclopropene (1-MCP) treatment, indicating that they were regulated by ethylene directly or indirectly in tomato fruit. In addition, subcellular localization analysis indicated that SlDRM1L1 and SlDRM5 located in the nucleus might have responsibility for RNA-directed DNA methylation (RdDM). Collectively, this paper provided a framework for gene discovery and functional characterization of C5-MTases and DNA demethylases in other Solanaceae species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号