首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dinoflagellate community present during blooms of the fish killing dinoflagellate Cochlodinium polykrikoides was characterized by DNA melting curve analysis and direct sequencing of the SSU rDNA amplified from environmental sample extracts. PCR amplification of genomic DNA from Gaedo water samples using dinoflagellate-specific SSU rDNA primers yielded 280 clones, which were screened by closed tube PCR-melting curve analysis targeting a region of the SSU rDNA, enabling high throughput analysis. Twenty-eight clones producing distinct melting curve patterns were sequenced, and their phylogenetic information revealed that C. polykrikoides co-occurred with morphologically similar species including Gymnodinium impudicum and Gymnodinium catenatum. Temporal variations of C. polykrikoides and G. impudicum abundances in South Sea were also examined by species-specific real-time TaqMan-based PCR probes developed in this study. C. polykrikoides- and G. impudicum-specific real-time PCR probes were designed targeting the internal transcribed spacer 2 ribosomal DNA region. The probe specificity was confirmed by testing against related dinoflagellates and verified by sequencing PCR products from environmental samples. The real-time PCR assays showed that C. polykrikoides cell densities peaked in August at 16,928 cells mL?1, while G. impudicum was present at low abundances (below 25 cells mL?1). Our amplified rDNA melting curve protocol provides a facile method for the characterization of the dinoflagellate community, and the real-time PCR assay could be an alternative method for rapid and sensitive enumeration of harmful dinoflagellates in the marine environment.  相似文献   

2.
Cochlodinium polykrikoides is a globally distributed, ichthyotoxic, bloom-forming dinoflagellate. Blooms of C. polykrikoides manifest themselves as large (many km2) and distinct patches with cell densities exceeding 103 ml−1 while water adjacent to these patches can have low cell densities (<100 cells ml−1). While the effect of these blooms on fish and shellfish is well-known, their impacts on microbial communities and biogeochemical cycles are poorly understood. Here, we investigated plankton communities and the cycling of carbon, nitrogen, and B-vitamins within blooms of C. polykrikoides and compared them to areas in close proximity (<100 m) with low C. polykrikoides densities. Within blooms, C. polykrikoides represented more than 90% of microplankton (>20 μm) cells, and there were significantly more heterotrophic bacteria and picoeukaryotic phytoplankton but fewer Synechococcus. Terminal restriction fragment length polymorphism analysis of 16S and 18S rRNA genes revealed significant differences in community composition between bloom and non-bloom samples. Inside the bloom patches, concentrations of vitamin B12 were significantly lower while concentrations of dissolved oxygen were significantly higher. Carbon fixation and nitrogen uptake rates were up to ten times higher within C. polykrikoides bloom patches. Ammonium was a more important source of nitrogen, relative to nitrate and urea, for microplankton within bloom patches compared to non-bloom communities. While uptake rates of vitamin B1 were similar in bloom and non-bloom samples, vitamin B12 was taken up at rates five-fold higher (>100 pmol−1 L−1 d−1) in bloom samples, resulting in turn-over times of hours during blooms. This high vitamin demand likely led to the vitamin B12 limitation of C. polykrikoides observed during nutrient amendment experiments conducted with bloom water. Collectively, this study revealed that C. polykrikoides blooms fundamentally change microbial communities and accelerate the cycling of carbon, some nutrients, and vitamin B12.  相似文献   

3.
Red tides dominated by Cochlodinium polykrikoides often lead to great economic losses and some methods of controlling these red tides have been developed. However, due to possible adverse effects and the short persistence of their control actions, safer and more effective sustainable methods should be developed. The non-toxic dinoflagellate Alexandrium pohangense is known to grow well mixotrophically feeding on C. polykrikoides, and populations are also maintained by photosynthesis. Thus, compared with other methods, the use of mass-cultured A. pohangense is safer and the effects can be maintained in the long term. To develop an effective method, the concentrations of A. pohangense cells and culture filtrate resulting in the death of C. polykrikoides cells were determined by adding the cells or filtrates to cultured and natural populations of C. polykrikoides. Cultures containing 800 A. pohangense cells ml−1 eliminated almost all cultured C. polykrikoides cells at a concentration of 1000 cells ml−1 within 24 h. Furthermore, the addition of A. pohangense cultures at a concentration of 800 cells ml−1 to C. polykrikoides populations from a red-tide patch resulted in the death of most C. polykrikoides cells (99.8%) within 24 h. This addition of A. pohangense cells also lowered the abundances of total phototrophic dinoflagellates excluding C. polykrikoides, but did not lower the abundance of total diatoms. Filtrate from 800 cells ml−1 A. pohangense cultures reduced the population of cultured C. polykrikoides by 80% within 48 h. This suggests that A. pohangense cells eliminate C. polykrikoides by feeding and releasing extracellular compounds. Over time, A. pohangense concentrations gradually increased when incubated with C. polykrikoides. Thus, an increase in the concentration of A. pohangense by feeding may lead to A. pohangense cells eliminating more C. polykrikoides cells in larger volumes. Based on the results of this study, a 1 m3 stock culture of A. pohangense at 4000 cells ml−1 is calculated to remove all C. polykrikoides cells in ca. 200 m3 within 6 days. Furthermore, maintenance of A. pohangense populations through photosynthesis prepared A. pohangense to eliminate C. polykrikoides cells in future red-tide patches. Moreover, incubation of A. pohangense at 2000 cells ml−1 with juvenile olive flounder Paralichthys olivaceus for 3 days did not result in the death of fish. Therefore, the method developed in this study is a safe and effective way of controlling C. polykrikoides populations and can be easily applied to aqua-tanks on land.  相似文献   

4.
5.
Massive blooms of the dinoflagellate Cochlodinium polykrikoides occur annually in the Chesapeake Bay and its tributaries. The initiation of blooms and their physical transport has been documented and the location of bloom initiation was identified during the 2007 and 2008 blooms. In the present study we combined daily sampling of nutrient concentrations and phytoplankton abundance at a fixed station to determine physical and chemical controls on bloom formation and enhanced underway water quality monitoring (DATAFLOW) during periods when blooms are known to occur. While C. polykrikoides did not reach bloom concentrations until late June during 2009, vegetative cells were present at low concentrations in the Elizabeth River (4 cells ml−1) as early as May 27. Subsequent samples collected from the Lafayette River documented the increase in C. polykrikoides abundance in the upper branches of the Lafayette River from mid-June to early July, when discolored waters were first observed. The 2009 C. polykrikoides bloom began in the Lafayette River when water temperatures were consistently above 25 °C and during a period of calm winds, neap tides, high positive tidal residuals, low nutrient concentrations, and a low dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorous (DIP) ratio. The pulsing of nutrients associated with intense but highly localized storm activity during the summer months when water temperatures are above 25 °C may play a role in the initiation of C. polykrikoides blooms. The upper Lafayette River appears to be an important area for initiation of algal blooms that then spread to other connected waterways.  相似文献   

6.
Brown tides caused by the pelagophyte Aureoumbra lagunensis DeYoe et Stockwell have formed ecosystem disruptive algal blooms in shallow lagoons of Texas (TX), USA, for more than two decades but have never been reported elsewhere. During the summer of 2012, a dense brown tide occurred in the Mosquito Lagoon and northern Indian River Lagoon along the east coast of Florida (FL), USA. While chlorophyll a levels in this system have averaged 5 μg L−1 during the past two decades, concentrations during this brown tide reached ∼200 μg L−1. Concurrently, levels of nitrate were significantly lower than average and levels of dissolved organic nitrogen were significantly higher than average (p < 0.001 for both). Sequences of the 18S rRNA gene of the bloom community and of single cell isolates were identical to those of Aureoumbra lagunensis DeYoe et Stockwell from TX. The A. lagunensis brown tide in FL bloomed to densities exceeding 106 cells mL−1 (quantified with a species-specific immuno-label) from July through September, began to dissipate in October, but maintained densities exceeding 105 cells mL−1 in some regions through December of 2012. The decline of the bloom was associated with near-hypoxic conditions and more than 30 fish kills reported within the Mosquito Lagoon in September 2012, a number far exceeding all prior monthly reports in this system dating to 1996. Wild northern quahog populations (a.k.a. hard clam, Mercenaria mercenaria) suffered mass die offs during the brown tide and eastern oysters (Crassostrea virginica) that settled during 2012 were significantly smaller than prior years. Clearance rates of hard clams and eastern oyster were significantly reduced in the presence of Mosquito Lagoon bloom water and A. lagunensis monocultures isolated from the Mosquito Lagoon at densities of ∼106 cells L−1. The expansion of harmful brown tides caused by A. lagunensis to these estuaries represents a new threat to the US southeast coast.  相似文献   

7.
The harmful dinoflagellate Cochlodinium polykrikoides is known to cause fish death by gill-clogging when its abundance exceeds approximately 1000 cells ml−1. Thus, red tides of this dinoflagellate have caused considerable loss in the aquaculture industry worldwide. Typhoons carrying strong winds and heavy rains may alter the process of red tide events. To investigate the effects of typhoons on C. polykrikoides red tides, daily variations in the abundance of C. polykrikoides, and wind speeds in three study areas in the South Sea of Korea were analyzed during the periods of C. polykrikoides red tides and the passage of 14 typhoons during 2012–2014. The typhoons differentially affected Cochlodinium red tides during the study period, and the daily maximum wind speed generated by the typhoon was critical. Four typhoons with daily maximum wind speeds of >14 m s−1 eliminated Cochlodinium red tides, while three typhoons with daily maximum wind speed of 5–14 m s−1 only lowered the abundance. However, other typhoons with daily maximum wind speeds of <5 m s−1 had no marked effect on the Cochlodinium abundance. Therefore, typhoons may sometimes eliminate C. polykrikoides red tide events, or reduce cell abundances to a level that is not harmful to caged fish cultivated in aquaculture industries. Thus, typhoons should be considered when compiling red tide dynamics and fish-kill models.  相似文献   

8.
In the summer of 2005 an exceptional bloom of the dinoflagellate Karenia mikimotoi occurred along Ireland's Atlantic seaboard and was associated with the mass mortality of both benthic and pelagic marine life. Oxygen depletion, cellular toxicity and physical smothering, are considered to be the main factors involved in mortality. In this paper we use a theoretical approach based on stoichiometry (the Anderson ratio) and an average K. mikimotoi cellular carbon content of 329 pg C cell−1 (n = 20) to calculate the carbonaceous and nitrogenous oxygen demand following bloom collapse. The method was validated against measurements of biochemical oxygen demand and K. mikimotoi cell concentration. The estimated potential oxygen utilisation (POU) was in good agreement with field observations across a range of cell concentrations. The magnitude of POU following bloom collapse, with the exception of three coastal areas, was considered insufficient to cause harm to most marine organisms. This indicates that the widespread occurrence of mortality was primarily due to other factors such as cellular toxicity and/or mucilage production, and not oxygen depletion or related phenomena. In Donegal Bay, Kilkieran Bay and inner Dingle Bay, where cell densities were in the order of 106 cells L−1, estimated POU was sufficient to cause hypoxia. Of the three areas, Donegal Bay is considered to be the most vulnerable due to its hydrographic characteristics (seasonally stratified, weak residual flow) and hypoxic conditions (2.2 mg L−1 O2) were directly observed in the Bay post bloom collapse. Here, depending on the time of bloom collapse, depressed DO levels could persist for weeks and continue to have a potentially chronic impact on the Bay.  相似文献   

9.
Although the diversity of dinoflagellates has been intensively studied in several locations in the Mediterranean Sea since the 1950s, it is only during the last two decades that the morphotype of the toxic unarmoured dinoflagellate Cochlodinium polykrikoides Margalef has been detected, coinciding with its apparent worldwide expansion in marine coastal waters. In this study, vegetative cells of C. polykrikoides morphotype from the Catalan coast (NW Mediterranean Sea) were detected and isolated, and the DNA from collected cells was sequenced. While in the Mediterranean Sea, detections are scarce and C. polykrikoides is consistently present at low concentrations, we reported exceptional blooms of this species, in which the maximum abundance reached 2 × 104 cells L−1. Partial LSU rDNA region sequences showed that most C. polykrikoides populations from the Catalan coast formed a new differentiated ribotype, but others were included within the ‘Philippines’ ribotype, demonstrating their coexistence in the Mediterranean Sea. Thus, the current biogeographic nomenclature of the ribotypes is likely to be invalid with respect to the available information from populations comprising the ‘Philippines’ ribotype. The phylogeny suggests the existence of cryptic species that should be evaluated for species-level status. Accordingly, the ribotype determination must be carefully evaluated for all detections and bloom events, since accurate characterization of the morphology, ecophysiology and distribution of the ribotypes are not well resolved.  相似文献   

10.
《Harmful algae》2011,10(6):557-562
Two species of Kareniaceae, Karlodinium veneficum (Swan and Huon River isolates) and Karlodinium conicum, and their respective purified karlotoxins (KmTx), were investigated for ichthyotoxicity on larval sheepshead minnow. Two non-karlotoxin producing species, Karenia mikimotoi and Karlodinium ballantinum were also tested. Algal treatments included live and lysed cells (homogenized and CuSO4 treated) with fish mortalities observed from lysed Ka. veneficum and Ka. conicum but none observed from K. mikimotoi and Ka. ballantinum. The variance in ichthyotoxicity between live and lysed cells of Ka. veneficum (Swan and Huon River) and Ka. conicum (Southern Ocean) confirm that toxin is cell bound and ichthyotoxicity increases upon lysis. Ichthyotoxic blooms of Ka. veneficum in situ in the Swan River, Western Australia and Chesapeake Bay, Maryland, USA are unrelated to algal cell density as mortality was observed with low densities. In laboratory treatments, no fish mortalities were observed upon exposure to live intact cells of all four species at algal concentrations up to 2.5 × 105 cells/mL in replete nutrient growth conditions. Lysed low density (3 × 104 cells/mL) Ka. veneficum (Swan and Huon River) grown under P-limited nutrients caused quicker fish mortality than those cultured in replete nutrient conditions. Pure toxin isolated from Ka. veneficum (Swan and Huon River) and Ka. conicum (Southern Ocean) were toxic to sheepshead minnow larvae, with the lethal dose lowest for KmHuonTx 2 (508.2 ng/mL), followed by KmSwanTx 2-1 (563.2 ng/mL), and KmconicumTx (762.4 ng/mL).  相似文献   

11.
Recent studies of dinoflagellates have reported that blooms can be closely related to the characteristics of the associated bacteria, but studies of the correlation between the toxic dinoflagellate, Cochlodinium polykrikoides and their associated bacterial community composition has not been explored. To understand this correlation, changes in bacterial community structure through the evolution of a C. polykrikoides bloom in Korean coastal waters via clone library analysis were investigated. Although there were no apparent changes in physio-chemical factors during the onset of the C. polykrikoides bloom, the abundance of bacteria bourgeoned in parallel with C. polykrikoides densities. Alpha-, gamma-proteobacteria and Flavobacteria were found to be dominant phyletic groups during C. polykrikoides blooms. The proportion of gamma-proteobacteria was lower (11.8%) during peak of the bloom period compared to the post-bloom period (26.2%). In contrast, alpha-proteobacteria increased in dominance during blooms. Among the alpha-proteobacteria, members of Rhodobacterales abruptly increased from 38% of the alpha-proteobacteria before the bloom to 74% and 56% during the early bloom and peak bloom stages, respectively. Moreover, multiple sites concurrently hosting C. polykrikoides blooms also contained high portions of Rhodobacterales and principal component analysis (PCA) demonstrated that Rhodobacterales had a positive, significant correlation with C. polykrikoides abundances (p  0.01, Pearson correlation coefficients). Collectively, this study reveals the specific clades of bacteria that increase (Rhodobacterales) and decrease (gamma-proteobacteria) in abundance C. polykrikoides during blooms.  相似文献   

12.
The genus Pfiesteria includes two toxigenic species, Pfiesteria piscicida and Pfiesteria shumwayae, that are thinly thecate dinoflagellates with apparently cosmopolitan distribution, especially in shallow, poorly flushed, eutrophic estuaries. They are heterotrophic prey generalists that typically feed via phagotrophy and prefer live fish or their fresh tissues as food. They can also engage in limited mixotrophy through temporary retention of kleptochloroplasts from algal prey. Toxicity is highly variable among strains, ranging from apparently nontoxic to highly toxic. Some strains produce a group of hydrophilic toxins with metal-mediated free radical production. Various metals can be involved in the toxin congeners, and the purified toxins are highly labile. These toxins can adversely affect mammalian cells as well as fish. Toxic strains are capable of killing fish by both toxins and physical attack from feeding upon epidermis and other tissues. Non-inducible strains do not produce sufficient toxin to kill fish, but some are capable of causing larval fish death by physical attack. From 1991 to 1998, Pfiesteria spp. were linked to major kills of juvenile Atlantic menhaden (Brevoortia tyrannus), mostly at densities of ≥4(3) × 102 to 103 (rarely, 104) flagellate cells mL−1. These kills mainly occurred in the second largest and largest estuaries on the U.S. mainland, especially two main tributaries of the Albemarle-Pamlico Estuarine System, following decades of hurricane-free conditions. Between kills, Pfiesteria abundance was low in surface waters (<10 cells mL−1), and the available evidence suggests that the populations were mostly in the lower water column and within surficial sediments. Apparently highly sensitive to scouring effects from major storms, Pfiesteria populations have been sparse in the affected estuaries since several hurricanes struck the Albemarle-Pamlico in the late 1990s. Recent research highlights include characterization of a novel group of Pfiesteria toxins, culture of a toxigenic strain on a sterile fish cell line, axenic culture on a semi-defined medium, the discovery of a new mode of heterotrophic feeding in dinoflagellates as manifested by Pfiesteria, and other advances in understanding the nutritional ecology and prey acquisition of these harmful dinoflagellates.  相似文献   

13.
Blooms caused by some species belonging to the dinoflagellate genus Alexandrium are known to cause large-scale mortality of fish. Thus, the dynamics of these species is important and of concern to scientists, officials, and people in the aquaculture industry. To understand the dynamics of such species, their growth and mortality due to predation need to be assessed. The newly described dinoflagellate Alexandrium pohangense is known to grow slowly, with a maximum autotrophic growth rate of 0.1 d−1. Thus, it may not form bloom patches if its mortality due to predation is high. Therefore, to explore the mortality of A. pohangense due to predation, feeding on this species by the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Luciella masanensis, Noctiluca scintillans, Oxyrrhis marina, Oblea rotunda, Polykrikos kofoidii, and Pfiesteria piscicida, as well as by the ciliate Tiarina fusus, was examined. None of these potential predators was able to feed on A. pohangense. In contrast, these potential predators were killed and their bodies were dissolved when incubated with A. pohangense cells or cell-free culture filtrates. The survival of G. moestrupii, O. marina, P. kofoidii, and T. fusus on incubation with 10 cells ml−1 of A. pohangense was 20–60%, while that at the equivalent culture filtrates was 20–70%. With increasing A. pohangense cell-concentration (up to 1000 cells ml−1 or equivalent culture filtrates), the survival rate of G. moestrupii, O. marina, P. kofoidii, and T. fusus rapidly decreased. The lethal concentration (LC50) for G. moestrupii, O. marina, P. kofoidii, and T. fusus at the elapsed time of 24 h with A. pohangense cells (cultures of 11.4, 13.3, 1.6, and 3.3 cells ml−1, respectively) was lower than that with A. pohangense filtrates (culture filtrates of 35.5, 30.6, 5.5, and 5.0 cells ml−1, respectively). Furthermore, most of the ciliates and heterotrophic dinoflagellates in the water collected from the coast of Tongyoung, Korea, were killed when incubated with cultures of 1000 A. pohangense cells ml−1 and equivalent culture filtrates. The relatively slow growing A. pohangense may form blooms by reducing mortality due to predation through killing potential protist predators.  相似文献   

14.
Occurrence of toxic cyanobacterial blooms has become a worldwide problem, increasing the risk of human poisoning due to consumption of seafood contaminated with cyanotoxins. Though no such cases of human intoxication due to toxic blooms have been reported so far from India, most of the studies related to blooms have been restricted to reporting of a bloom and/or antimicrobial activity of its extract. Detailed toxicity study of cyanobacterial blooms are lacking. A study on the toxicity of a dense bloom (14.56 × 106 trichomes L−1) of the marine diazotrophic cyanobacteria, Trichodesmium erythraeum, observed in the coastal waters of Phoenix Bay, Port Blair, Andamans was undertaken. The significance of this bloom is that it was a single species and had conspicuously inhibited the growth of other phytoplankton and complete exclusion of zooplankton from the bloom region, intimating the involvement of toxins in the bloom. The cyanobacterial extracts showed prominent antimicrobial activity against certain human pathogenic bacteria and fungi. Studies on the toxicity of the cyanobacterial extracts was carried out using brine shrimp bioassay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and comet assay. The cyanobacterial extract exhibited toxic effect to Artemia salina causing mortality of up to 40% after 48 h at a concentration of 1 mg mL−1, while it induced cytotoxicity in cell lines (HepG2 and HaCat) and caused DNA damage in human lymphocytes in vitro.  相似文献   

15.
A toxic bloom of Pseudo-nitzschia spp. was observed in the Alabama coastal waters of the northern Gulf of Mexico (NGOM) in June 2009 that resulted in the accumulation of domoic acid (DA) in fish. The bloom initiated following a large storm event that likely caused increased groundwater discharge 16–20 days prior to peak densities. Eleven sites, located in littoral shoreline waters and inshore embayments spanning the entire Alabama NGOM coastline, were sampled during peak densities to assess Pseudo-nitzschia species composition and toxicity, and associated water-quality parameters. Small fish (0.27–11.9 g body weight) were collected at six of these sites for analysis of DA content. High Pseudo-nitzschia spp. densities (8.27 × 104–5.05 × 106 cell l−1) were detected at eight sites located in the littoral shoreline and particulate DA was detected at six of these littoral sites (48.0–540 pg ml−1). The bloom consisted primarily (>90%) of Pseudo-nitzschia subfraudulenta, a species previously characterized as forming only a minor component of Pseudo-nitzschia assemblages and not known to produce DA. Pseudo-nitzschia spp. were at low densities or not detected at the inshore sites and DA was detected at these sites. Pseudo-nitzschia spp. density varied along an estuarine gradient, with greater densities occurring in the most saline, clear, and nutrient-poor waters. Cell density was strongly and negatively correlated with silicate (Si) concentrations and the ratios of silicate to dissolved inorganic nitrogen and phosphate (Si:DIN and Si:PO4). Cell toxin quota was negatively correlated with phosphate, and strongly and positively correlated with the ratio of total nitrogen to total phosphorus (TN:TP). These relationships are consistent with previous observations that indicate Pseudo-nitzschia spp. density and toxicity are likely to be greater in high salinity, high irradiance, and nutrient-poor waters. DA was detected in 128 of 131 (98%) of the fish collected, which included seven primary and secondary consumer species. This is the first demonstration of trophic transfer of DA in this region of the NGOM, indicating that toxic blooms of Pseudo-nitzschia spp. in Alabama coastal waters have the potential to transfer DA to recreationally and commercially important fish species.  相似文献   

16.
The unicellular alga Prymnesium parvum has been responsible for toxic incidents with severe ecological impacts in many parts of the world, and causes massive fish kills worldwide. Recently the haptophyte microalgae have caused water-bloom (4.3 × 104 cells ml−1) in 6 fish ponds with high conductivity in Hungary, and caused fish mortality with typical symptoms. Toxicity of P. parvum from water samples was quantified by the assay of the influence of its cell-free filtrates on haemolysis (346 ± 42.2) and in fish and daphnia toxicity tests. High amount of proteases in P. parvum containing waterbloom samples were detected with the help of activity gel electrophoresis. The proteases of investigated P. parvum samples (125–18 kDa) showed high gelatinolytic activity and some of them showed sensitivity to EDTA (inhibitors of metalloproteases) and to PMSF (inhibitors of serine proteases).  相似文献   

17.
《Harmful algae》2008,7(1):1-10
On 29 April 2003, a Heterosigma akashiwo bloom (9.5 × 104 cells mL−1) associated with a fish kill (>104 dead fishes estimated from aerial surveys) was observed offshore of Bulls Bay, McLellanville, South Carolina, USA. To assess a potential cause of this bloom event, we investigated the bacterial diversity and algal/bacterial interactions in the bloom microbial community. Thirty-five bacterial strains were isolated and screened for algicidal or algal growth-promoting activities. One strain (BBB25) had significant growth-promoting effects on all 7 algal species tested: three raphidophytes (Heterosigma akashiwo, Chattonella subsalsa, Fibrocapsa japonica), two diatoms (Chaetoceros neogracile, Nitzschia sp.), a cryptophyte (Cryptomonas sp.), and a chlorophyte, Ankistrodesmus sp. This strain (BBB25) is a Gram-positive, rod-shaped spore-forming bacterium. Partial 16S rDNA gene sequence and morphological characters indicated that BBB25 is related closely to the genus Bacillus. The general nature of the algal response indicates that the growth-promoting effects of BBB25 are not specific to H. akashiwo, and suggests potentially widespread effects. Since the presence or relative abundance of the other algal species was not assessed during the bloom initiation period, the selective stimulatory effect on H. akashiwo bloom formation in Bulls Bay is unknown. These results demonstrate, however, the potential for bacterial species to play a regulatory role in bloom formation.  相似文献   

18.
Annual blooms of the toxic dinoflagellate Karenia brevis in the eastern Gulf of Mexico represent one of the most predictable global harmful algal bloom (HAB) events, yet remain amongst the most difficult HABs to effectively monitor for human and environmental health. Monitoring of Karenia blooms is necessary for a variety of precautionary, management and predictive purposes. These include the protection of public health from exposure to aerosolized brevetoxins and the consumption of toxic shellfish, the protection and management of environmental resources, the prevention of bloom associated economic losses, and the evaluation of long term ecosystem trends and for potential future bloom forecasting and prediction purposes. The multipurpose nature of Karenia monitoring, the large areas over which blooms occur, the large range of Karenia cell concentrations (from 5 × 103 cells L?1 to >1 × 106 cells L?1) over which multiple bloom impacts are possible, and limitations in resources and knowledge of bloom ecology have complicated K. brevis monitoring, mitigation and management strategies. Historically, K. brevis blooms were informally and intermittently monitored on an event response basis in Florida, usually in the later bloom stages after impacts (e.g. fish kills, marine mammal mortalities, respiratory irritation) were noted and when resources were available. Monitoring of different K. brevis bloom stages remains the most practical method for predicting human health impacts and is currently accomplished by the state of Florida via direct microscopic counts of water samples from a state coordinated volunteer HAB monitoring program. K. brevis cell concentrations are mapped weekly and disseminated to stakeholders via e-mail, web and toll-free phone numbers and provided to Florida Department of Agriculture and Consumer Services (FDACS) for management of both recreational and commercial shellfish beds in Florida and to the National Oceanic and Atmospheric Administration (NOAA) for validation of the NOAA Gulf of Mexico HAB bulletin for provision to environmental managers. Many challenges remain for effective monitoring and management of Karenia blooms, however, including incorporating impact specific monitoring for the diverse array of potential human and environmental impacts associated with blooms, timely detection of offshore bloom initiation, sampling of the large geographic extent of blooms which often covers multiple state boundaries, and the involvement of multiple Karenia species other than K. brevis (several of which have yet to be isolated and described) with unknown toxin profiles. The implementation and integration of a diverse array of optical, molecular and hybrid Karenia detection technologies currently under development into appropriate regulatory and non-regulatory monitoring formats represents a further unique challenge.  相似文献   

19.
The inimical effects of the ichthyotoxic harmful algal bloom (HAB)-forming raphidophytes Heterosigma akashiwo, Chattonella marina, and Chattonella antiqua on the early-life stages of the Japanese pearl oyster Pinctada fucata martensii were studied. Fertilized eggs and developing embryos were not affected following exposure to the harmful raphidophytes; however, all three algal species severely affected trochophores and D-larvae, early-stage D-larvae, and late-stage pre-settling larvae. Exposure to C. marina (5 × 102 cells ml−1), C. antiqua (103 cells ml−1), and H. akashiwo (5 × 103 cells ml−1) resulted in decreased success of metamorphosis to the trochophore stage. A complete inhibition of trochophore metamorphosis was observed following exposure to C. antiqua at 5 × 103 cells ml−1 and C. marina at 8 × 103 cells ml−1. In all experiments, more than 80% of newly formed trochophores were anomalous, and in the case of exposure to H. akashiwo at 105 cells ml−1 more than 70% of D-larvae were anomalous. The activity rates of D-larvae (1-day-old) were significantly reduced following exposure to C. antiqua (8 × 103 cells ml−1, 24 h), C. marina (8 × 103 cells ml−1, 24 h), and H. akashiwo (104 cells ml−1, 24 h). The activity rates of pre-settling larvae (21-day-old) were also significantly reduced following exposure to C. antiqua (103 cells ml−1, 24 h), C. marina (8 × 103 cells ml−1, 24 h), and H. akashiwo (5 × 104 cells ml−1, 24 h). Significant mortalities of both larval stages were induced by all three raphidophytes, with higher mortality rates registered for pre-settling larvae than D-larvae, especially following exposure to C. marina (5 × 102–8 × 103 cells ml−1, 48–86 h) and C. antiqua (103–8 × 103 cells ml−1, 72–86 h). Contact between raphidophyte cells and newly metamorphosed trochophores and D-larvae, 1-day-old D-larvae, and 21-day-old larvae resulted in microscopic changes in the raphidophytes, and then, in the motile early-life stages of pearl oysters. Upon contact and physical disturbance of their cells by larval cilia, H. akashiwo, C. marina and C. antiqua became immotile and shed their glycocalyx. The trochophores and larvae were observed trapped in a conglomerate of glycocalyx and mucus, most probably a mixture of larval mucous and raphidophyte tricosyts and mucocytes. All motile stages of pearl oyster larvae showed a typical escape behavior translating into increased swimming in an effort to release themselves from the sticky mucous traps. The larvae subsequently became exhausted, entrapped in more heavy mucous, lost their larval cilia, sank, become immotile, and died. Although other toxic mediators could have been involved, the results of the present study indicate that all three raphidophytes were harmful only for motile stages of pearl oysters, and that the physical disturbance of their cells upon contact with the ciliary structures of pearl oyster larvae initiated the harmful mechanism. The present study is the first report of lethal effects of harmful Chattonella spp. towards larvae of a bivalve mollusc. Blooms of H. akashiwo, C. antiqua and C. marina occur in all major cultivation areas of P. fucata martensii during the developmental period of their larvae. Therefore, exposure of the motile early-life stages of Japanese pearl oysters could adversely affect their population recruitment. In addition, the present study shows that further research with early-life development of pearl oysters and other bivalves could contribute to improving the understanding of the controversial harmful mechanisms of raphidophytes in marine organisms.  相似文献   

20.
Harmful algal blooms (HABs) are globally expanding, compromising water quality worldwide. HAB dynamics are determined by a complex interplay of abiotic and biotic factors, and their emergence has often been linked to eutrophication, and more recently to climate change. The dinoflagellate Alexandrium is one of the most widespread HAB genera and its success is based on key functional traits like allelopathy, mixotrophy, cyst formation and nutrient retrieval migrations. Since 2012, dense Alexandrium ostenfeldii blooms (up to 4500 cells mL−1) have recurred annually in a creek located in the southwest of the Netherlands, an area characterized by intense agriculture and aquaculture. We investigated how physical, chemical and biological factors influenced A. ostenfeldii bloom dynamics over three consecutive years (2013–2015). Overall, we found a decrease in the magnitude of the bloom over the years that could largely be linked to changing weather conditions during summer. More specifically, low salinities due to excessive rainfall and increased wind speed corresponded to a delayed A. ostenfeldii bloom with reduced population densities in 2015. Within each year, highest population densities generally corresponded to high temperatures, low DIN:DIP ratios and low grazer densities. Together, our results demonstrate an important role of nutrient availability, absence of grazing, and particularly of the physical environment on the magnitude and duration of A. ostenfeldii blooms. Our results suggest that predicted changes in the physical environment may enhance bloom development in future coastal waters and embayments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号