首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
Red tides dominated by Cochlodinium polykrikoides often lead to great economic losses and some methods of controlling these red tides have been developed. However, due to possible adverse effects and the short persistence of their control actions, safer and more effective sustainable methods should be developed. The non-toxic dinoflagellate Alexandrium pohangense is known to grow well mixotrophically feeding on C. polykrikoides, and populations are also maintained by photosynthesis. Thus, compared with other methods, the use of mass-cultured A. pohangense is safer and the effects can be maintained in the long term. To develop an effective method, the concentrations of A. pohangense cells and culture filtrate resulting in the death of C. polykrikoides cells were determined by adding the cells or filtrates to cultured and natural populations of C. polykrikoides. Cultures containing 800 A. pohangense cells ml−1 eliminated almost all cultured C. polykrikoides cells at a concentration of 1000 cells ml−1 within 24 h. Furthermore, the addition of A. pohangense cultures at a concentration of 800 cells ml−1 to C. polykrikoides populations from a red-tide patch resulted in the death of most C. polykrikoides cells (99.8%) within 24 h. This addition of A. pohangense cells also lowered the abundances of total phototrophic dinoflagellates excluding C. polykrikoides, but did not lower the abundance of total diatoms. Filtrate from 800 cells ml−1 A. pohangense cultures reduced the population of cultured C. polykrikoides by 80% within 48 h. This suggests that A. pohangense cells eliminate C. polykrikoides by feeding and releasing extracellular compounds. Over time, A. pohangense concentrations gradually increased when incubated with C. polykrikoides. Thus, an increase in the concentration of A. pohangense by feeding may lead to A. pohangense cells eliminating more C. polykrikoides cells in larger volumes. Based on the results of this study, a 1 m3 stock culture of A. pohangense at 4000 cells ml−1 is calculated to remove all C. polykrikoides cells in ca. 200 m3 within 6 days. Furthermore, maintenance of A. pohangense populations through photosynthesis prepared A. pohangense to eliminate C. polykrikoides cells in future red-tide patches. Moreover, incubation of A. pohangense at 2000 cells ml−1 with juvenile olive flounder Paralichthys olivaceus for 3 days did not result in the death of fish. Therefore, the method developed in this study is a safe and effective way of controlling C. polykrikoides populations and can be easily applied to aqua-tanks on land.  相似文献   

2.
The harmful dinoflagellate Cochlodinium polykrikoides is known to cause fish death by gill-clogging when its abundance exceeds approximately 1000 cells ml−1. Thus, red tides of this dinoflagellate have caused considerable loss in the aquaculture industry worldwide. Typhoons carrying strong winds and heavy rains may alter the process of red tide events. To investigate the effects of typhoons on C. polykrikoides red tides, daily variations in the abundance of C. polykrikoides, and wind speeds in three study areas in the South Sea of Korea were analyzed during the periods of C. polykrikoides red tides and the passage of 14 typhoons during 2012–2014. The typhoons differentially affected Cochlodinium red tides during the study period, and the daily maximum wind speed generated by the typhoon was critical. Four typhoons with daily maximum wind speeds of >14 m s−1 eliminated Cochlodinium red tides, while three typhoons with daily maximum wind speed of 5–14 m s−1 only lowered the abundance. However, other typhoons with daily maximum wind speeds of <5 m s−1 had no marked effect on the Cochlodinium abundance. Therefore, typhoons may sometimes eliminate C. polykrikoides red tide events, or reduce cell abundances to a level that is not harmful to caged fish cultivated in aquaculture industries. Thus, typhoons should be considered when compiling red tide dynamics and fish-kill models.  相似文献   

3.
Although the diversity of dinoflagellates has been intensively studied in several locations in the Mediterranean Sea since the 1950s, it is only during the last two decades that the morphotype of the toxic unarmoured dinoflagellate Cochlodinium polykrikoides Margalef has been detected, coinciding with its apparent worldwide expansion in marine coastal waters. In this study, vegetative cells of C. polykrikoides morphotype from the Catalan coast (NW Mediterranean Sea) were detected and isolated, and the DNA from collected cells was sequenced. While in the Mediterranean Sea, detections are scarce and C. polykrikoides is consistently present at low concentrations, we reported exceptional blooms of this species, in which the maximum abundance reached 2 × 104 cells L−1. Partial LSU rDNA region sequences showed that most C. polykrikoides populations from the Catalan coast formed a new differentiated ribotype, but others were included within the ‘Philippines’ ribotype, demonstrating their coexistence in the Mediterranean Sea. Thus, the current biogeographic nomenclature of the ribotypes is likely to be invalid with respect to the available information from populations comprising the ‘Philippines’ ribotype. The phylogeny suggests the existence of cryptic species that should be evaluated for species-level status. Accordingly, the ribotype determination must be carefully evaluated for all detections and bloom events, since accurate characterization of the morphology, ecophysiology and distribution of the ribotypes are not well resolved.  相似文献   

4.
Harmful algal blooms caused by Cochlodinium polykrikoides are annual occurrences in coastal systems around the world. In New York (NY), USA, estuaries, bloom densities range from 103 to 105 mL?1 with higher densities (≥104 cells mL?1) being acutely toxic to multiple fish and shellfish species. Here, we report on the toxicity of C. polykrikoides strains recently isolated from New York and Massachusetts (USA) estuaries to juvenile fish (Cyprinodon variegates) and bay scallops (Argopecten irradians), as well as on potential mechanisms of toxicity. Cultures of C. polykrikoides exhibited dramatically more potent ichthyotoxicity than raw bloom water with 100% fish mortality occurring within ~1 h at densities as low as 3.3 × 102 cells mL?1. More potent toxicity in culture was also observed in bioassays using juvenile bay scallops, which experienced 100% mortality during 3 days exposure to cultures at cell densities an order of magnitude lower than raw bloom water (~3 × 103 cells mL?1). The toxic activity per C. polykrikoides cell was dependent on the growth stages of cultures with early exponential growth cultures being more potent than cultures in late-exponential or stationary phases. The ichthyotoxicity of cultures was also dependent on both cell density and fish size, as a hyperbolic relationship between the death time of fish and the ratio of algal cell density to length of fish was found (~103 cells mL?1 cm?1 yielded 100% fish mortality in 24 h). Simultaneous exposure of fish to C. polykrikoides and a second algal species (Rhodomonas salina or Prorocentrum minimum) increased survival time of fish, and decreased the fish mortality suggesting additional cellular biomass mitigated the ichthyotoxicity. Frozen and thawed-, sonicated-, or heat-killed-, C. polykrikoides cultures did not cause fish mortality. In contrast, cell-free culture medium connected to an active culture through a 5 μm nylon membrane caused complete mortality in fish, although the time required to kill fish was significantly longer than direct exposure to the whole culture. These results indicate that ichthyotoxicity of C. polykrikoides isolates is dependent on viability of cells and that direct physical contact between fish and cells is not required to cause mortality. The ability of the enzymes peroxidase and catalase to significantly reduce the toxicity of live cultures and the inability of hydrogen peroxide to mimic the ichthyotoxicity of C. polykrikoides isolates suggests that the toxicity could be caused by non-hydrogen peroxide, highly reactive, labile toxins such as ROS-like chemicals.  相似文献   

5.
Morphological observations have confirmed that cysts are produced by dinoflagellates. However, finding a seed bed or unknown cysts in field samples by microscopy is extremely time consuming. Real-time PCR has been used to facilitate the detection of dinoflagellate cysts in sediment. However, DNA from dead vegetative cells remaining on the surface sediment may persist for a long period of time, which can cause false positive DNA detection. In this study, a non-quantitative RNA targeted probe using real-time RT-PCR was developed for detection of viable cysts in sediment. Large-subunit rRNA was used to develop a species-specific RNA targeted probe for the ichthyotoxic dinoflagellate Cochlodinium polykrikoides. The sediment samples were sieved and incubated at 30 °C for 3 h prior to RNA extraction to remove RNA from dead cells remaining in the sediment. Nested-PCR was conducted to maximize assay sensitivity. A field survey to determine the distribution of cysts at 155 sampling stations in the western and southern part of the Korean peninsula showed that C. polykrikoides cysts were detected at five sampling stations.  相似文献   

6.
Cochlodinium polykrikoides is a globally distributed, ichthyotoxic, bloom-forming dinoflagellate. Blooms of C. polykrikoides manifest themselves as large (many km2) and distinct patches with cell densities exceeding 103 ml−1 while water adjacent to these patches can have low cell densities (<100 cells ml−1). While the effect of these blooms on fish and shellfish is well-known, their impacts on microbial communities and biogeochemical cycles are poorly understood. Here, we investigated plankton communities and the cycling of carbon, nitrogen, and B-vitamins within blooms of C. polykrikoides and compared them to areas in close proximity (<100 m) with low C. polykrikoides densities. Within blooms, C. polykrikoides represented more than 90% of microplankton (>20 μm) cells, and there were significantly more heterotrophic bacteria and picoeukaryotic phytoplankton but fewer Synechococcus. Terminal restriction fragment length polymorphism analysis of 16S and 18S rRNA genes revealed significant differences in community composition between bloom and non-bloom samples. Inside the bloom patches, concentrations of vitamin B12 were significantly lower while concentrations of dissolved oxygen were significantly higher. Carbon fixation and nitrogen uptake rates were up to ten times higher within C. polykrikoides bloom patches. Ammonium was a more important source of nitrogen, relative to nitrate and urea, for microplankton within bloom patches compared to non-bloom communities. While uptake rates of vitamin B1 were similar in bloom and non-bloom samples, vitamin B12 was taken up at rates five-fold higher (>100 pmol−1 L−1 d−1) in bloom samples, resulting in turn-over times of hours during blooms. This high vitamin demand likely led to the vitamin B12 limitation of C. polykrikoides observed during nutrient amendment experiments conducted with bloom water. Collectively, this study revealed that C. polykrikoides blooms fundamentally change microbial communities and accelerate the cycling of carbon, some nutrients, and vitamin B12.  相似文献   

7.
Massive blooms of the dinoflagellate Cochlodinium polykrikoides occur annually in the Chesapeake Bay and its tributaries. The initiation of blooms and their physical transport has been documented and the location of bloom initiation was identified during the 2007 and 2008 blooms. In the present study we combined daily sampling of nutrient concentrations and phytoplankton abundance at a fixed station to determine physical and chemical controls on bloom formation and enhanced underway water quality monitoring (DATAFLOW) during periods when blooms are known to occur. While C. polykrikoides did not reach bloom concentrations until late June during 2009, vegetative cells were present at low concentrations in the Elizabeth River (4 cells ml−1) as early as May 27. Subsequent samples collected from the Lafayette River documented the increase in C. polykrikoides abundance in the upper branches of the Lafayette River from mid-June to early July, when discolored waters were first observed. The 2009 C. polykrikoides bloom began in the Lafayette River when water temperatures were consistently above 25 °C and during a period of calm winds, neap tides, high positive tidal residuals, low nutrient concentrations, and a low dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorous (DIP) ratio. The pulsing of nutrients associated with intense but highly localized storm activity during the summer months when water temperatures are above 25 °C may play a role in the initiation of C. polykrikoides blooms. The upper Lafayette River appears to be an important area for initiation of algal blooms that then spread to other connected waterways.  相似文献   

8.
Recent studies of dinoflagellates have reported that blooms can be closely related to the characteristics of the associated bacteria, but studies of the correlation between the toxic dinoflagellate, Cochlodinium polykrikoides and their associated bacterial community composition has not been explored. To understand this correlation, changes in bacterial community structure through the evolution of a C. polykrikoides bloom in Korean coastal waters via clone library analysis were investigated. Although there were no apparent changes in physio-chemical factors during the onset of the C. polykrikoides bloom, the abundance of bacteria bourgeoned in parallel with C. polykrikoides densities. Alpha-, gamma-proteobacteria and Flavobacteria were found to be dominant phyletic groups during C. polykrikoides blooms. The proportion of gamma-proteobacteria was lower (11.8%) during peak of the bloom period compared to the post-bloom period (26.2%). In contrast, alpha-proteobacteria increased in dominance during blooms. Among the alpha-proteobacteria, members of Rhodobacterales abruptly increased from 38% of the alpha-proteobacteria before the bloom to 74% and 56% during the early bloom and peak bloom stages, respectively. Moreover, multiple sites concurrently hosting C. polykrikoides blooms also contained high portions of Rhodobacterales and principal component analysis (PCA) demonstrated that Rhodobacterales had a positive, significant correlation with C. polykrikoides abundances (p  0.01, Pearson correlation coefficients). Collectively, this study reveals the specific clades of bacteria that increase (Rhodobacterales) and decrease (gamma-proteobacteria) in abundance C. polykrikoides during blooms.  相似文献   

9.
While the toxic dinoflagellate Cochlodinium polykrikoides is known to form blooms that are maintained for extended periods, the genetic differentiation of these blooms are currently unknown. To assess this, we developed a real-time PCR assay to quantify C. polykrikoides at the intra-specific level, and applied this assay to field samples collected in Korean coastal waters from summer through fall. Assays were successfully developed to target the large-subunit ribosomal RNA region of the three major ribotypes of C. polykrikoides: Philippines, East Asian, and American/Malaysian. Significant linear relationships (r2  0.995) were established between Ct and the log of the copy number for each ribotype qPCR assay. Using these assays, C. polykrikoides blooms in Korean coastal waters were found to be comprised of Philippines and East Asian ribotypes but not the American/Malaysian ribotype. The Philippines ribotype was found to be highly abundant during summer bloom initiation and peak, whereas the East Asian ribotype became the dominant ribotype in the fall. As such, this newly developed qPCR assay can be used to quantify the cryptic ecological succession of sub-populations of C. polykrikoides during blooms that light microscopy and previously developed qPCR assays cannot resolve.  相似文献   

10.
To investigate tropical roles of the newly described Yihiella yeosuensis (ca. 8 μm in cell size), one of the smallest phototrophic dinoflagellates in marine ecosystems, its trophic mode and the types of prey species that Y. yeosuensis can feed upon were explored. Growth and ingestion rates of Y. yeosuensis on its optimal prey, Pyramimonas sp. (Prasinophyceae), as a function of prey concentration were measured. Additionally, growth and ingestion rates of Y. yeosuensis on the other edible prey, Teleaulax sp. (Cryptophyceae), were also determined for a single prey concentration at which both these rates of Y. yeosuensis on Pyramimonas sp. were saturated. Among bacteria and diverse algal prey tested, Y. yeosuensis fed only on small Pyramimonas sp. and Teleaulax sp. (both cell sizes = 5.6 μm). With increasing mean prey concentrations, both specific growth and ingestion rates of Y. yeosuensis increased rapidly before saturating at a mean Pyramimonas concentration of 109 ng C mL−1 (2725 cells mL−1). The maximum growth rate (mixotrophic growth) of Y. yeosuensis fed with Pyramimonas sp. at 20 °C under a 14:10-h light-dark cycle of 20 μE m−2 s−1 was 1.32 d−1, whereas the growth rate of Y. yeosuensis without added prey was 0.026 d−1. The maximum ingestion rate of Y. yeosuensis fed with Pyramimonas sp. was 0.37 ng C predator−1 d−1 (9.3 cells predator−1 d−1). At a Teleaulax concentration of 1130 ng C mL−1 (66,240 cells mL−1), growth and ingestion rates of Y. yeosuensis fed with Teleaulax sp. were 1.285 d−1 and 0.38 ng C predator−1 d−1 (22.4 cells predator−1 d−1), respectively. Thus, Y. yeosuensis rarely grows without mixotrophy, and mixotrophy supports high growth rates in Y. yeosuensis. Y. yeosuensis has the highest maximum mixotrophic growth rate with the exception of Ansanella graniferaamong engulfment feeding mixotrophic dinoflagellates. However, the high swimming speed of Y. yeosuensis (1572 μm s−1), almost the highest among phototrophic dinoflagellates, may prevent autotrophic growth. This evidence suggests that Y. yeosuensis may be an effective mixotrophic dinoflagellate predator on Pyramimonas and Teleaulax, and occurs abundantly during or after blooms of these two prey species.  相似文献   

11.
The genus Pfiesteria includes two toxigenic species, Pfiesteria piscicida and Pfiesteria shumwayae, that are thinly thecate dinoflagellates with apparently cosmopolitan distribution, especially in shallow, poorly flushed, eutrophic estuaries. They are heterotrophic prey generalists that typically feed via phagotrophy and prefer live fish or their fresh tissues as food. They can also engage in limited mixotrophy through temporary retention of kleptochloroplasts from algal prey. Toxicity is highly variable among strains, ranging from apparently nontoxic to highly toxic. Some strains produce a group of hydrophilic toxins with metal-mediated free radical production. Various metals can be involved in the toxin congeners, and the purified toxins are highly labile. These toxins can adversely affect mammalian cells as well as fish. Toxic strains are capable of killing fish by both toxins and physical attack from feeding upon epidermis and other tissues. Non-inducible strains do not produce sufficient toxin to kill fish, but some are capable of causing larval fish death by physical attack. From 1991 to 1998, Pfiesteria spp. were linked to major kills of juvenile Atlantic menhaden (Brevoortia tyrannus), mostly at densities of ≥4(3) × 102 to 103 (rarely, 104) flagellate cells mL−1. These kills mainly occurred in the second largest and largest estuaries on the U.S. mainland, especially two main tributaries of the Albemarle-Pamlico Estuarine System, following decades of hurricane-free conditions. Between kills, Pfiesteria abundance was low in surface waters (<10 cells mL−1), and the available evidence suggests that the populations were mostly in the lower water column and within surficial sediments. Apparently highly sensitive to scouring effects from major storms, Pfiesteria populations have been sparse in the affected estuaries since several hurricanes struck the Albemarle-Pamlico in the late 1990s. Recent research highlights include characterization of a novel group of Pfiesteria toxins, culture of a toxigenic strain on a sterile fish cell line, axenic culture on a semi-defined medium, the discovery of a new mode of heterotrophic feeding in dinoflagellates as manifested by Pfiesteria, and other advances in understanding the nutritional ecology and prey acquisition of these harmful dinoflagellates.  相似文献   

12.
Blooms caused by some species belonging to the dinoflagellate genus Alexandrium are known to cause large-scale mortality of fish. Thus, the dynamics of these species is important and of concern to scientists, officials, and people in the aquaculture industry. To understand the dynamics of such species, their growth and mortality due to predation need to be assessed. The newly described dinoflagellate Alexandrium pohangense is known to grow slowly, with a maximum autotrophic growth rate of 0.1 d−1. Thus, it may not form bloom patches if its mortality due to predation is high. Therefore, to explore the mortality of A. pohangense due to predation, feeding on this species by the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Luciella masanensis, Noctiluca scintillans, Oxyrrhis marina, Oblea rotunda, Polykrikos kofoidii, and Pfiesteria piscicida, as well as by the ciliate Tiarina fusus, was examined. None of these potential predators was able to feed on A. pohangense. In contrast, these potential predators were killed and their bodies were dissolved when incubated with A. pohangense cells or cell-free culture filtrates. The survival of G. moestrupii, O. marina, P. kofoidii, and T. fusus on incubation with 10 cells ml−1 of A. pohangense was 20–60%, while that at the equivalent culture filtrates was 20–70%. With increasing A. pohangense cell-concentration (up to 1000 cells ml−1 or equivalent culture filtrates), the survival rate of G. moestrupii, O. marina, P. kofoidii, and T. fusus rapidly decreased. The lethal concentration (LC50) for G. moestrupii, O. marina, P. kofoidii, and T. fusus at the elapsed time of 24 h with A. pohangense cells (cultures of 11.4, 13.3, 1.6, and 3.3 cells ml−1, respectively) was lower than that with A. pohangense filtrates (culture filtrates of 35.5, 30.6, 5.5, and 5.0 cells ml−1, respectively). Furthermore, most of the ciliates and heterotrophic dinoflagellates in the water collected from the coast of Tongyoung, Korea, were killed when incubated with cultures of 1000 A. pohangense cells ml−1 and equivalent culture filtrates. The relatively slow growing A. pohangense may form blooms by reducing mortality due to predation through killing potential protist predators.  相似文献   

13.
Photosynthetic species of the dinoflagellate genus Cochlodinium such as C. polykrikoides, one of the most harmful bloom-forming dinoflagellates, have been extensively investigated. Little is known about the heterotrophic forms of Cochlodinium, such as its type species, Cochlodinium strangulatum. This is an uncommon, large (∼200 μm long), solitary, and phagotrophic species, with numerous refractile bodies, a central nucleus enclosed in a distinct perinuclear capsule, and a cell surface with fine longitudinal striae and a circular apical groove. The morphology of C. polykrikoides and allied species is different from the generic type. It is a bloom-forming species with single, two or four-celled chains, small cell size (25–40 μm long) with elongated chloroplasts arranged longitudinally and in parallel, anterior nucleus, eye-spot in the anterior dorsal side, and a cell surface smooth with U-shaped apical groove. Phylogenetic analysis based on LSU rDNA sequences revealed that C. strangulatum and C. polykrikoides/C. fulvescens formed two distally related, independent lineages. Based on morphological and phylogenetic analyses, the diagnosis of Cochlodinium is emended and C. miniatum is proposed as synonym of C. strangulatum. The new genus Margalefidinium gen. nov., and new combinations for C. catenatum, C. citron, C. flavum, C. fulvescens and C. polykrikoides are proposed.  相似文献   

14.
Studies of epiphytic dinoflagellates in Peter the Great Bay, Sea of Japan in 2008–2011 revealed the presence of 13 species. Five of the species are known as potentially toxic: Amphidinium carterae, A. operculatum, Ostreopsis cf. ovata, O. cf. siamensis and Prorocentrum lima. The maximum species richness and abundance of epiphytic dinoflagellates were observed in autumn (from September to October). Ostreopsis spp. were most widely distributed and predominated, amounting to 99% of the total density of dinoflagellates. Multi-year seasonal dynamics of Ostreopsis spp. in Peter the Great Bay showed that these cells appear as epiphyton in August after maximum warming of surface waters (22–24 °С) and disappear in early November, when the water temperature decreases below 7 °С. Ostreopsis spp. proliferation occurred in September, when the water temperature was 17.2–21.0 °C. The highest densities of Ostreopsis spp. were recorded on September 9, 2010 on the rhodophyte Neorhodomela aculeata – 230 × 103 cells g−1 DW or 52 × 103 cells g−1 FW. The spatial distribution of epiphytic dinoflagellates was investigated in the near-shore areas of Peter the Great Bay during the second half of September 2010 to evaluate the role of hydrodynamic conditions. Epiphytic dinoflagellates were not found in sheltered sites having weak mixing hydrodynamics. However, the abundances of Ostreopsis spp. were significantly higher at sites having moderate turbulence compared to biotopes experiencing strong wave action. Densities of Ostreopsis spp. were not significantly different on macrophytes with branched thallus of all taxonomic divisions. However, the average cell densities of Ostreopsis spp. on green algae with branched thallus were significantly higher than on green algae having laminar thallus.  相似文献   

15.
In this study, a quantitative real-time PCR (qPCR) assay targeting the second internal transcribed spacer (ITS2) of the nuclear-encoded ribosomal RNA gene (rDNA) was developed for Alexandrium tamiyavanichii, a harmful tropical marine dinoflagellate. This species is of concern because it produces toxins that cause paralytic shellfish poisoning (PSP). The qPCR assay employed hydrolysis probe technology and showed high specificity, with a detection limit of 102 gene copies (less than one cell equivalent). Using this assay, the spatial distribution of A. tamiyavanichii was assessed, for the first time, in the southeastern South China Sea and the Sulu Sea. Plankton samples were collected from 71 stations during a scientific cruise from the Research Vessel Sonne as part of the joint EU project on Stratosphere ozone: Halogens in a Varying Atmosphere (SHIVA), conducted in November 2011. The highest cell densities were detected offshore of Kuching, southern Borneo (150 cells l−1) and exceeded the threshold level of 20–40 cells l−1 where the bioaccumulation of PSP toxins by shellfish is of concern. The distribution of A. tamiyavanichii was patchy horizontally with the highest cell concentrations found mainly offshore of southern Borneo, and a heterogeneous vertical distribution was observed above the pycnocline. The A. tamiyavanichii qPCR assay proved its applicability, specificity and sensitivity, and provides an alternative implementation tool for harmful microalgae monitoring programs.  相似文献   

16.
The bacterium, Shewanella sp. IRI-160, was previously shown to have negative effects on the growth of dinoflagellates, while having no negative effects on other classes of phytoplankton tested (Hare et al., 2005). In this study, we investigated the mode of algicidal activity for Shewanella sp. IRI-160 and found that the bacterium secretes a bioactive compound. The optimum temperature for production of the algicidal compound by this bacterium was at 30 °C. Bacteria-free filtrate of medium containing the algicide (designated IRI-160AA) was stable at temperatures ranging from −80 °C to 121 °C, and could be stored at room temperature for at least three weeks with no loss in activity. Algicidal activity was eluted in the aqueous portion after C18 extraction, suggesting that the active compound is likely polar and water-soluble. The activity of IRI-160AA was examined on a broad range of dinoflagellates (Karlodinium veneficum, Karenia brevis, Gyrodinium instriatum, Cochlodinium polykrikoides, Heterocapsa triquetra, Prorocentrum minimum, Alexandrium tamarense and Oxyrrhis marina) and three species from other classes of algae as controls (Dunaliella tertiolecta, Rhodomonas sp. and Thalassiosira pseudonana). Algicidal activity was observed for each dinoflagellate and little to no negative effect was observed on chlorophyte and cryptophyte cultures, while a slight (non-significant) stimulatory effect was observed on the diatom culture exposed to the algicide. Finally, the effect of the algicide at different growth stages was investigated for K. veneficum and G. instriatum. IRI-160AA exhibited a significantly greater effect during logarithmic growth compared to stationary phase, suggesting a potential application of the algicide for prevention and control of harmful dinoflagellate blooms in the future.  相似文献   

17.
Red tides by the ichthyotoxic dinoflagellate Cochlodinium polykrikoides have caused large scaled mortality of fish and great loss in aquaculture industry in many countries. Detecting and quantifying the abundance of this species are the most critical step in minimizing the loss. The conventional quantitative real-time PCR (qPCR) method has been used for quantifying the abundance of this species. However, when analyzing > 500 samples collected during huge C. polykrikoides red tides in South Sea of Korea in 2014, this conventional method and the previously developed specific primer and probe set for C. polykrikoides did not give reasonable abundances when compared with cell counting data. Thus improved qPCR methods and a new specific primer and probe set reflecting recent discovery of 2 new ribotypes have to be developed. A new species-specific primer and probe set for detecting all 3 ribotypes of C. polykrikoides was developed and provided in this study. Furthermore, because the standard curve between cell abundance and threshold cycle value (Ct) is critical, the efficiencies of 4 different preparation methods used to determine standard curves were comparatively evaluated. The standard curves were determined by using the following 4 different preparations: (1) extraction of DNA from a dense culture of C. polykrikoides followed by serial dilution of the extracted DNA (CDD method), (2) extraction of DNA from each of the serially diluted cultures with different concentrations of C. polykrikoides cultures (CCD method), (3) extraction of DNA from a dense field sample of C. polykrikoides collected from natural seawater and then dilution of the extracted DNA in serial (FDD method), and (4) extraction of DNA from each of the serially diluted field samples having different concentrations of C. polykrikoides (FCD method). These 4 methods yielded different results. The abundances of C. polykrikoides in the samples collected from the coastal waters of South Sea, Korea, in 2014–2015, obtained using the standard curves determined by the CCD and the FCD methods, were the most similar (0.93–1.03 times) and the second closest (1.16–1.33 times) to the actual cell abundances obtained by enumeration of cells. Thus, our results suggest that the CCD method is a more effective tool to quantify the abundance of C. polykrikoides than the conventional method, CDD, and the FDD and FCD methods.  相似文献   

18.
Takayama spp. are phototrophic dinoflagellates belonging to the family Kareniaceae and have caused fish kills in several countries. Understanding their trophic mode and interactions with co-occurring phytoplankton species are critical steps in comprehending their ecological roles in marine ecosystems, bloom dynamics, and dinoflagellate evolution. To investigate the trophic mode and interactions of Takayama spp., the ability of Takayama helix to feed on diverse algal species was examined, and the mechanisms of prey ingestion were determined. Furthermore, growth and ingestion rates of T. helix feeding on the dinoflagellates Alexandrium lusitanicum and Alexandrium tamarense, which are two optimal prey items, were determined as a function of prey concentration. T. helix ingested large dinoflagellates ≥15 μm in size, except for the dinoflagellates Karenia mikimotoi, Akashiwo sanguinea, and Prorocentrum micans (i.e., it fed on Alexandrium minutum, A. lusitanicum, A. tamarense, A. pacificum, A. insuetum, Cochlodinium polykrikoides, Coolia canariensis, Coolia malayensis, Gambierdiscus caribaeus, Gymnodinium aureolum, Gymnodinium catenatum, Gymnodinium instriatum, Heterocapsa triquetra, Lingulodinium polyedrum, and Scrippsiella trochoidea). All these edible prey items are dinoflagellates that have diverse eco-physiology such as toxic and non-toxic, single and chain forming, and planktonic and benthic forms. However, T. helix did not feed on small flagellates and dinoflagellates <13 μm in size (i.e., the prymnesiophyte Isochrysis galbana; the cryptophytes Teleaulax sp., Storeatula major, and Rhodomonas salina; the raphidophyte Heterosigma akashiwo; the dinoflagellates Heterocapsa rotundata, Amphidinium carterae, Prorocentrum minimum; or the small diatom Skeletonema costatum). T. helix ingested Heterocapsa triquetra by direct engulfment, but sucked materials from the rest of the edible prey species through the intercingular region of the sulcus. With increasing mean prey concentration, the specific growth rates of T. helix on A. lusitanicum and A. tamarense increased continuously before saturating at prey concentrations of 336–620 ng C mL−1. The maximum specific growth rates (mixotrophic growth) of T. helix on A. lusitanicum and A. tamarense were 0.272 and 0.268 d−1, respectively, at 20 °C under a 14:10 h light/dark cycle of 20 μE m−2 s−1 illumination, while its growth rates (phototrophic growth) under the same light conditions without added prey were 0.152 and 0.094 d−1, respectively. The maximum ingestion rates of T. helix on A. lusitanicum and A. tamarense were 1.23 and 0.48 ng C predator−1d−1, respectively. The results of the present study suggest that T. helix is a mixotrophic dinoflagellate that is able to feed on a diverse range of toxic species and, thus, its mixotrophic ability should be considered when studying red tide dynamics, food webs, and dinoflagellate evolution.  相似文献   

19.
A new toxin-producing marine diatom, Nitzschia bizertensis sp. nov., isolated from the Bizerte Lagoon (Tunisia, Southwest Mediterranean Sea) is, based on studies on eight different strains, characterized morphologically by light microscopy, transmission and scanning electron microscopy, and phylogenetically using the nuclear rDNA regions: SSU, ITS1, 5.8S, ITS2 and D1–D3 of the LSU. The species belongs to the sections Lanceolatae or Lineares as defined by Cleve and Grunow (1880). These sections are characterized by species having linear-lanceolate valves with an eccentric raphe where the fibulae does not extend into the valve, and are otherwise famous for the lack of characters useful for delineation of species. Nitzschia bizertensis differs from most other species in these sections by having a high density of interstriae. The morphological and phylogenetic studies and comparisons with previously described Nitzschia species showed Nitzschia bizertensis sp. nov. to be a new species. Batch culture experiments were conducted for estimations of maximum growth rate and production of domoic acid (DA). Maximum cellular DA content of the examined strains ranged from 2 × 10−4 to 3.6 × 10−2 pg cells−1. The total DA concentration (pg mL−1) was high already in exponential growth phase maybe due to reinoculation of “old” stationary phase cells, and increased into stationary growth phase where it reached a stationary level varying among the strains from ca. 4500 to 9500 pg mL−1. Nitzschia bizertensis represents a new domoic acid-producing diatom and is the second toxin producing Nitzschia species. The resolution of Nitzschia bizertensis and Nitzschia navis-varingica in different parts of the LSU phylogenetic tree, and the recovery of the Pseudo-nitzschia species phylogenetically distant from those two species suggests that the ability to produce DA either evolved multiple times independently or was lost multiple times.  相似文献   

20.
Gymnodinium catenatum, a dinoflagellate species with a global distribution, is known to produce paralytic shellfish poisoning (PSP) toxins. The profile of toxins of G. catenatum is commonly dominated by sulfocarbamoyl analogs including the C3 + 4 and GTX6, which to date has no commercial certified reference materials necessary for their quantification via chemical methods, such as liquid chromatography. The aim of this study was to assess the presence of C3 + 4 and GTX6 and their contribution to shellfish toxicity. C3 + 4 and GTX6 were indirectly quantified via pre-column oxidation liquid chromatography with fluorescence detection after hydrolysis conversion into their carbamate analogs. Analyses were carried out in mussel samples collected over a bloom of G. catenatum (>63 × 103 cells l−1) in Aveiro lagoon, NW Portuguese coast. Concentration levels of sulfocarbamoyl toxin analogs were two orders of magnitude higher than decarbamoyl toxins, which were in turn one order of magnitude higher than carbamoyl toxins. Among the sulfocarbamoyl toxins, C1 + 2 were clearly the dominant compounds, followed by C3 + 4 and GTX6. The least abundant sulfocarbamoyl toxin was GTX5. The most important compounds in terms of contribution for sample toxicity were C1 + 2, which justified 26% of the PSP toxicity. The lesser abundant dcSTX constitutes the second most important compound with similar % of toxicity to C1 + 2, C3 + 4 and GTX6 were responsible for approximately 11% and 13%, respectively. The median of the sum of C3 + 4 and GTX6 was 27%. These levels reached a maximum of 60% as was determined for the sample collected closest to the G. catenatum bloom. This study highlights the importance of these low potency PSP toxin analogs to shellfish toxicity. Hydrolysis conversion of C3 + 4 and GTX6 is recommended for determination of PSP toxicity when LC detection methods are used for PSP testing in samples exposed to G. catenatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号