首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
γH2AX焦点(foci)被普遍当做DNA双链断裂(DSB)损伤的分子标志物.为探 讨细胞周期进程相关的H2AX磷酸化规律特征,采用胸腺嘧啶双阻滞结合噻氨酯哒唑(nocodazole)的后续处理,将HeLa细胞同步于有丝分裂的前中期.然后,用流式细胞仪检测细胞周期、Western印迹和免疫荧光法,观察γH2AX表达和γH2AX焦点的形成.结果显示,细胞进入G2/M期和有丝分裂过程中,γH2AX水平显著增加 ;在无DNA DSB发生的情况下,部分M期细胞中也存在大量的γH2AX焦点.随着细 胞完成有丝分裂从M期退出再进入G1期,γH2AX的表达水平逐渐降低.这种 γH2AX表达变化特征与G2/M期密切关联的PLK1和Cyclin B1的表达规律相类似. 在4 Gy大剂量照射下,HeLa细胞于照后8 到12 h出现明显的G2/M期阻滞.γH2AX 焦点数在照后1 h达高峰,随后降低,照后8 h又上升,出现了第2个峰值.与之不同的是,在1 Gy低剂量照射下,细胞的G2/M期阻滞微弱,γH2AX焦点数在照后 0.5 h最高,随后下降,且无反弹,符合DNA DSB的修复动力学特征.因此,将γ H2AX当做DNA DSB分子标志物时,还需要考虑细胞周期变化的影响.γH2AX适合 作为1 Gy以下照射的DNA双链断裂损伤的分子标志.  相似文献   

2.
DNA double-strand breaks (DSBs) represent an important radiation-induced lesion and impaired DSB repair provides the best available correlation with radiosensitivity. Physical techniques for monitoring DSB repair require high, non-physiological doses and cannot reliably detect subtle defects. One outcome from extensive research into the DNA damage response is the observation that H2AX, a variant form of the histone H2A, undergoes extensive phosphorylation at the DSB, creating γH2AX foci that can be visualised by immunofluorescence. There is a close correlation between γH2AX foci and DSB numbers and between the rate of foci loss and DSB repair, providing a sensitive assay to monitor DSB repair in individual cells using physiological doses. However, γH2AX formation can occur at single-stranded DNA regions which arise during replication or repair and thus does not solely correlate with DSB formation. Here, we present and discuss evidence that following exposure to ionising radiation, γH2AX foci analysis can provide a sensitive monitor of DSB formation and repair and describe techniques to optimise the analysis. We discuss the limitations and benefits of the technique, enabling the procedure to be optimally exploited but not misused.  相似文献   

3.
The maintenance of genome stability requires efficient DNA double-stranded break (DSB) repair mediated by the phosphorylation of multiple histone H2AX molecules near the break sites. The phosphorylated H2AX (γ-H2AX) molecules form foci covering many megabases of chromatin. The formation of g-H2AX foci is critical for efficient DNA damage response (DDR) and for the maintenance of genome stability, however, the mechanisms of protein organization in foci is largely unknown. To investigate the nature of γ-H2AX foci formation, we analyzed the distribution of γ-H2AX and other DDR proteins at DSB sites using a variety of techniques to visualize, expand and partially disrupt chromatin. We report here that γ-H2AX foci change composition during the cell cycle, with proteins 53BP1, NBS1 and MRE11 dissociating from foci in G2 and mitosis to return at the beginning of the following G1. In contrast, MDC1 remained colocalized with g-H2AX during mitosis. In addition, while γ-H2AX was found to span large domains flanking DSB sites, 53BP1 and NBS1 were more localized and MDC1 colocalized in doublets in foci. H2AX and MDC1 were found to be involved in chromatin relaxation after DSB formation. Our data demonstrates that the DSB repair focus is a heterogeneous and dynamic structure containing internal complexity.  相似文献   

4.
The repair of DNA double-strand breaks is critical for genome integrity and tumor suppression. Here we show that following treatment with the DNA-intercalating agent actinomycin D (ActD), normal quiescent T cells accumulate double-strand breaks and die, whereas T cells from ataxia telangiectasia (AT) and Nijmegen breakage syndrome (NBS) patients are resistant to this death pathway despite a comparable amount of DNA damage. We demonstrate that the ActD-induced death pathway in quiescent T lymphocytes follows DNA damage and H2AX phosphorylation, is ATM- and NBS1-dependent and due to p53-mediated cellular apoptosis. In response to genotoxic 2-Gy gamma-irradiation, on the other hand, quiescent T cells from normal donors survive following complete resolution of the damage thus induced. T cells from AT and NBS patients also survive, but retain foci of phosphorylated H2AX due to a subtle double-strand break (DSB) repair defect. A common consequence of these two genetic defects in the DSB response is the apparent tolerance of cells containing DNA breaks. We suggest that this tolerance makes a major contribution to the oncogenic risk of patients with chromosome instability syndromes.  相似文献   

5.
6.
The presence of γH2AX foci on apparently intact mitotic chromosomes is controversial because they challenge the assumed relationship between γH2AX foci and DNA double-strand breaks (DSBs). In this work, we show that after irradiation during interphase, a variety of γH2AX foci are scored in mitotic cells. Surprisingly, approximately 80% of the γH2AX foci spread over apparently undamaged chromatin at Terminal or Interstitial positions and they can display variable sizes, thus being classified as Small, Medium and Big foci. Chromosome and chromatid breaks that reach mitosis are spotted with Big (60%) and Medium (30%) Terminal γH2AX foci, but very rarely are they signaled with Small γH2AX foci. To evaluate if Interstitial γH2AX foci might be signatures of misrejoining, an mFISH analysis was performed on the same slides. The results show that Interstitial γH2AX foci lying on apparently intact chromatin do not mark sites of misrejoining, and that misrejoined events were never signaled by a γH2AX foci during mitosis. Finally, when analyzing the presence of other DNA-damage response (DDR) factors we found that all γH2AX foci—regardless their coincidence with a visible break—always colocalized with MRE11, but not with 53BP1. This pattern suggests that these γH2AX foci may be hallmarks of both microscopically visible and invisible DNA damage, in which an active, although incomplete or halted DDR is taking place.  相似文献   

7.
Chromatin is a dynamic complex of DNA and proteins that regulates the flow of information from genome to end product. The efficient recognition and faithful repair of DNA damage, particularly double-strand damage, is essential for genomic stability and cellular homeostasis. Imperfect repair of DNA double-strand breaks (DSBs) can lead to oncogenesis. The efficient repair of DSBs relies in part on the rapid formation of foci of phosphorylated histone H2AX (γ-H2AX) at each break site, and the subsequent recruitment of repair factors. These foci can be visualized with appropriate antibodies, enabling low levels of DSB damage to be measured in samples obtained from patients. Such measurements are proving useful to optimize treatments involving ionizing radiation, to assay in vivo the efficiency of various drugs to induce DNA damage, and to help diagnose patients with a variety of syndromes involving elevated levels of γ-H2AX. We will survey the state of the art of utilizing γ-H2AX in clinical settings. We will also discuss possibilities with other histone post-translational modifications. The ability to measure in vivo the responses of individual patients to particular drugs and/or radiation may help optimize treatments and improve patient care. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   

8.
Human replication protein A (RPA p34), a crucial component of diverse DNA excision repair pathways, is implicated in DNA double-strand break (DSB) repair. To evaluate its role in DSB repair, the intranuclear dynamics of RPA was investigated after DNA damage and replication blockage in human cells. Using two different agents [ionizing radiation (IR) and hydroxyurea (HU)] to generate DSBs, we found that RPA relocated into distinct nuclear foci and colocalized with a well-known DSB binding factor, gamma-H2AX, at the sites of DNA damage in a time-dependent manner. Colocalization of RPA and gamma-H2AX foci peaked at 2 h after IR treatment and subsequently declined with increasing postrecovery times. The time course of RPA and gamma-H2AX foci association correlated well with the DSB repair activity detected by a neutral comet assay. A phosphatidylinositol-3 (PI-3) kinase inhibitor, wortmannin, completely abolished both RPA and gamma-H2AX foci formation triggered by IR. Additionally, radiosensitive ataxia telangiectasia (AT) cells harboring mutations in ATM gene product were found to be deficient in RPA and gamma-H2AX colocalization after IR. Transfection of AT cells with ATM cDNA fully restored the association of RPA foci with gamma-H2AX illustrating the requirement of ATM gene product for this process. The exact coincidence of RPA and gamma-H2AX in response to HU specifically in S-phase cells supports their role in DNA replication checkpoint control. Depletion of RPA by small interfering RNA (SiRNA) substantially elevated the frequencies of IR-induced micronuclei (MN) and apoptosis in human cells suggestive of a role for RPA in DSB repair. We propose that RPA in association with gamma-H2AX contributes to both DNA damage checkpoint control and repair in response to strand breaks and stalled replication forks in human cells.  相似文献   

9.
10.
A sequence variant of histone H2A called H2AX is one of the key components of chromatin involved in DNA damage response induced by different genotoxic stresses. Phosphorylated H2AX (γH2AX) is rapidly concentrated in chromatin domains around DNA double-strand breaks (DSBs) after the action of ionizing radiation or chemical agents and at stalled replication forks during replication stress. γH2AX foci could be easily detected in cell nuclei using immunofluorescence microscopy that allows to use γH2AX as a quantitative marker of DSBs in various applications. H2AX is phosphorylated in situ by ATM, ATR, and DNA-PK kinases that have distinct roles in different pathways of DSB repair. The γH2AX serves as a docking site for the accumulation of DNA repair proteins, and after rejoining of DSBs, it is released from chromatin. The molecular mechanism of γH2AX dephosphorylation is not clear. It is complicated and requires the activity of different proteins including phosphatases and chromatin-remodeling complexes. In this review, we summarize recently published data concerning the mechanisms and kinetics of γH2AX loss in normal cells and tissues as well as in those deficient in ATM, DNA-PK, and DSB repair proteins activity. The results of the latest scientific research of the low-dose irradiation phenomenon are presented including the bystander effect and the adaptive response estimated by γH2AX detection in cells and tissues.  相似文献   

11.
BACKGROUND: The response of eukaryotic cells to double-strand breaks in genomic DNA includes the sequestration of many factors into nuclear foci. Recently it has been reported that a member of the histone H2A family, H2AX, becomes extensively phosphorylated within 1-3 minutes of DNA damage and forms foci at break sites. RESULTS: In this work, we examine the role of H2AX phosphorylation in focus formation by several repair-related complexes, and investigate what factors may be involved in initiating this response. Using two different methods to create DNA double-strand breaks in human cells, we found that the repair factors Rad50 and Rad51 each colocalized with phosphorylated H2AX (gamma-H2AX) foci after DNA damage. The product of the tumor suppressor gene BRCA1 also colocalized with gamma-H2AX and was recruited to these sites before Rad50 or Rad51. Exposure of cells to the fungal inhibitor wortmannin eliminated focus formation by all repair factors examined, suggesting a role for the phosphoinositide (PI)-3 family of protein kinases in mediating this response. Wortmannin treatment was effective only when it was added early enough to prevent gamma-H2AX formation, indicating that gamma-H2AX is necessary for the recruitment of other factors to the sites of DNA damage. DNA repair-deficient cells exhibit a substantially reduced ability to increase the phosphorylation of H2AX in response to ionizing radiation, consistent with a role for gamma-H2AX in DNA repair. CONCLUSIONS: The pattern of gamma-H2AX foci that is established within a few minutes of DNA damage accounts for the patterns of Rad50, Rad51, and Brca1 foci seen much later during recovery from damage. The evidence presented strongly supports a role for the gamma-H2AX and the PI-3 protein kinase family in focus formation at sites of double-strand breaks and suggests the possibility of a change in chromatin structure accompanying double-strand break repair.  相似文献   

12.
DNA double-strand break (DSB) repair and checkpoint control represent distinct mechanisms to reduce chromosomal instability. Ataxia telangiectasia (A-T) cells have checkpoint arrest and DSB repair defects. We examine the efficiency and interplay of ATM's G2 checkpoint and repair functions. Artemis cells manifest a repair defect identical and epistatic to A-T but show proficient checkpoint responses. Only a few G2 cells enter mitosis within 4 h after irradiation with 1 Gy but manifest multiple chromosome breaks. Most checkpoint-proficient cells arrest at the G2/M checkpoint, with the length of arrest being dependent on the repair capacity. Strikingly, cells released from checkpoint arrest display one to two chromosome breaks. This represents a major contribution to chromosome breakage. The presence of chromosome breaks in cells released from checkpoint arrest suggests that release occurs before the completion of DSB repair. Strikingly, we show that checkpoint release occurs at a point when approximately three to four premature chromosome condensation breaks and approximately 20 gammaH2AX foci remain.  相似文献   

13.
Rapid phosphorylation of histone H2AX after exposure of cells to ionizing radiation occurs at DSB sites and extends to a region including as much as 30 Mbp of chromatin to form visible microscopic structures called gamma-H2AX foci. Although the kinetics of total cellular histone H2AX phosphorylation after irradiation has been characterized, we still know little about the phosphorylation kinetics of individual gamma-H2AX foci. In addition, there are hundreds of smaller gamma-H2AX foci that are not associated with DNA double-strand breaks. We refer to these sites as DSB-unrelated gamma-H2AX foci. By using indirect immunofluorescence microscopy, deconvolution and three-dimensional image analysis, we established an objective method to quantitatively analyze each gamma-H2AX focus as well as to discriminate DSB-related gamma-H2AX foci from DSB-unrelated gamma-H2AX foci. Using this method, we found that histone H2AX phosphorylation at different DSB sites was asynchronous after exposure to ionizing radiation. This may reflect the heterogeneous characteristic of free DNA ends that are generated under these conditions. In addition, we found that increased histone H2AX phosphorylation also occurred outside of DSB sites after exposure to ionizing radiation. The function of this DSB-unassociated phosphorylation is not known.  相似文献   

14.
DNA double-strand breaks (DSBs) can induce chromosomal aberrations and carcinogenesis and their correct repair is crucial for genetic stability. The cellular response to DSBs depends on damage signaling including the phosphorylation of the histone H2AX (γH2AX). However, a lack of γH2AX formation in heterochromatin (HC) is generally observed after DNA damage induction. Here, we examine γH2AX and repair protein foci along linear ion tracks traversing heterochromatic regions in human or murine cells and find the DSBs and damage signal streaks bending around highly compacted DNA. Given the linear particle path, such bending indicates a relocation of damage from the initial induction site to the periphery of HC. Real-time imaging of the repair protein GFP-XRCC1 confirms fast recruitment to heterochromatic lesions inside murine chromocenters. Using single-ion microirradiation to induce localized DSBs directly within chromocenters, we demonstrate that H2AX is early phosphorylated within HC, but the damage site is subsequently expelled from the center to the periphery of chromocenters within ~ 20 min. While this process can occur in the absence of ATM kinase, the repair of DSBs bordering HC requires the protein. Finally, we describe a local decondensation of HC at the sites of ion hits, potentially allowing for DSB movement via physical forces.  相似文献   

15.
c-Abl tyrosine kinase is activated by agents that induce double-strand DNA breaks (DSBs) and interacts with key components of the DNA damage response and of the DSB repair machinery. However, the functional significance of c-Abl in these processes, remained unclear. In this study, we demonstrate, using comet assay and pulsed-field gel electrophoresis, that c-Abl inhibited the repair of DSBs induced by ionizing radiation, particularly during the second and slow phase of DSB repair. Pharmacological inhibition of c-Abl and c-Abl depletion by siRNA-mediated knockdown resulted in higher DSB rejoining. c-Abl null MEFs exhibited higher DSB rejoining compared with cells reconstituted for c-Abl expression. Abrogation of c-Abl kinase activation resulted in higher H2AX phosphorylation levels and higher numbers of post-irradiation γH2AX foci, consistent with a role of c-Abl in DSB repair regulation. In conjunction with these findings, transient abrogation of c-Abl activity resulted in increased cellular radioresistance. Our findings suggest a novel function for c-Abl in inhibition of the slow phase of DSB repair.  相似文献   

16.
Control of sister chromatid recombination by histone H2AX   总被引:1,自引:0,他引:1  
Histone H2AX has a role in suppressing genomic instability and cancer. However, the mechanisms by which it performs these functions are poorly understood. After DNA breakage, H2AX is phosphorylated on serine 139 in chromatin near the break. We show here that H2AX serine 139 enforces efficient homologous recombinational repair of a chromosomal double-strand break (DSB) by using the sister chromatid as a template. BRCA1, Rad51, and CHK2 contribute to recombinational repair, in part independently of H2AX. H2AX(-/-) cells show increased use of single-strand annealing, an error-prone deletional mechanism of DSB repair. Therefore, the chromatin response around a chromosomal DSB, in which H2AX serine 139 phosphorylation plays a central role, "shapes" the repair process in favor of potentially error-free interchromatid homologous recombination at the expense of error-prone repair. H2AX phosphorylation may help set up a favorable disposition between sister chromatids.  相似文献   

17.
DNA double-strand breaks and gamma-H2AX signaling in the testis   总被引:6,自引:0,他引:6  
Within minutes of the induction of DNA double-strand breaks in somatic cells, histone H2AX becomes phosphorylated at serine 139 and forms gamma-H2AX foci at the sites of damage. These foci then play a role in recruiting DNA repair and damage-response factors and changing chromatin structure to accurately repair the damaged DNA. These gamma-H2AX foci appear in response to irradiation and genotoxic stress and during V(D)J recombination and meiotic recombination. Independent of irradiation, gamma-H2AX occurs in all intermediate and B spermatogonia and in preleptotene to zygotene spermatocytes. Type A spermatogonia and round spermatids do not exhibit gamma-H2AX foci but show homogeneous nuclear gamma-H2AX staining, whereas in pachytene spermatocytes gamma-H2AX is only present in the sex vesicle. In response to ionizing radiation, gamma-H2AX foci are generated in spermatogonia, spermatocytes, and round spermatids. In irradiated spermatogonia, gamma-H2AX interacts with p53, which induces spermatogonial apoptosis. These events are independent of the DNA-dependent protein kinase (DNA-PK). Irradiation-independent nuclear gamma-H2AX staining in leptotene spermatocytes demonstrates a function for gamma-H2AX during meiosis. gamma-H2AX staining in intermediate and B spermatogonia, preleptotene spermatocytes, and sex vesicles and round spermatids, however, indicates that the function of H2AX phosphorylation during spermatogenesis is not restricted to the formation of gamma-H2AX foci at DNA double-strand breaks.  相似文献   

18.
Phosphorylated H2AX is considered to be a biomarker for DNA double-strand breaks (DSB), but recent evidence suggests that γH2AX does not always indicate the presence of DSB. Here we demonstrate the bimodal dynamic of H2AX phosphorylation induced by ionizing radiation, with the second peak appearing when G2/M arrest is induced. An increased level of γH2AX occurred in mitotic cells, and this increase was attenuated by DNA-PKcs inactivation or Chk2 depletion, but not by ATM inhibition. The phosphorylation-mimic CHK2-T68D abrogated the attenuation of mitotic γH2AX induced by DNA-PKcs inactivation. Thus, the DNA-PKcs/CHK2 pathway mediates the mitotic phosphorylation of H2AX in the absence of DNA damage.  相似文献   

19.
Histone H2AX is phosphorylated and forms foci in response to exposure to ionizing radiation. It has been thought that phosphorylated histone H2AX foci reflect unrepaired DNA double-strand breaks; however, we report here the localization of phosphorylated histone H2AX foci at the site of rejoined DNA double-strand breaks. We observed that phosphorylated histone H2AX foci remained even 96 h after exposure to X rays in interphase cells. To clarify the localization of residual phosphorylated histone H2AX foci, we examined localization of focus formation on mitotic chromosomes irradiated with X rays. We found that phosphorylated histone H2AX foci were located not only on chromosomal fragments but also on intact metaphase chromosomes without fragments. In anaphase cells, chromosomal bridges, which resulted from illegitimate rejoining of DNA broken ends, had phosphorylated histone H2AX foci. These foci were detected as individual small spots 30 min after X irradiation, but foci detected 20 or 96 h after X irradiation were clustered along the chromosomal bridges. These results indicate that phosphorylated histone H2AX foci persist if DNA breaks are rejoined. It is suggested that "residual" foci indicate an aberrant chromatin structure by illegitimate rejoining but not a DNA double-strand break itself.  相似文献   

20.
Accumulation of DNA damage may play an essential role in both cellular senescence and organismal aging. The ability of cells to sense and repair DNA damage declines with age. However, the underlying molecular mechanism for this age-dependent decline is still elusive. To understand quantitative and qualitative changes in the DNA damage response during human aging, DNA damage-induced foci of phosphorylated histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs) and eroded telomeres, were examined in human young and senescing fibroblasts, and in lymphocytes of peripheral blood. Here, we show that the incidence of endogenous γ-H2AX foci increases with age. Fibroblasts taken from patients with Werner syndrome, a disorder associated with premature aging, genomic instability and increased incidence of cancer, exhibited considerably higher incidence of γ-H2AX foci than those taken from normal donors of comparable age. Further increases in γ-H2AX focal incidence occurred in culture as both normal and Werner syndrome fibroblasts progressed toward senescence. The rates of recruitment of DSB repair proteins to γ-H2AX foci correlated inversely with age for both normal and Werner syndrome donors, perhaps due in part to the slower growth of γ-H2AX foci in older donors. Because genomic stability may depend on the efficient processing of DSBs, and hence the rapid formation of γ-H2AX foci and the rapid accumulation of DSB repair proteins on these foci at sites of nascent DSBs, our findings suggest that decreasing efficiency in these processes may contribute to genome instability associated with normal and pathological aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号