首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The filamentous cyanobacterium Planktothrix rubescens produces secondary metabolites called microcystins (MC) that are potent toxins for most eukaryotes, including zooplankton grazers, cattle and humans. P. rubescens occurs in many deep and thermally stratified lakes throughout Europe. In Lake Zurich (Switzerland), it re-appeared in the 1970s concomitant with decreasing eutrophication. Since then, P. rubescens has become the dominant species in this major drinking water reservoir, where it forms massive metalimnetic blooms during late summer. These cyanobacteria harbor subpopulations of non-MC producers, but little is known about the environmental factors affecting the success of such genotypes. The non-MC-producing subpopulation of P. rubescens was studied using a quantitative real-time PCR (qPCR) assay on the MC synthetase (mcy) gene cluster that targets a deletion on the mcyH and mcyA genes, which inactivates MC biosynthesis. Two complementary qPCR assays were used to assess the total population abundance (based on the 16S rDNA gene) and the mcy gene copy number (based on a conserved region in the adenylation domain of the mcyB gene). The objective was to evaluate the seasonal patterns of the share of non-MC-producing filaments in the total P. rubescens population. The mcyHA mutants were present in low proportions (up to 14%) throughout the year. Their highest relative abundances occurred during the winter mixis, when total concentrations of P. rubescens were minimal. The MC deficient mutants seemed to better survive in sparse populations, possibly because of lower grazing pressure and a consequently reduced need for MC-mediated protection. Alternatively, the mutants might cope better with the sub-optimal, stressful pressure and light conditions during the winter mixis. Altogether, our results suggest that subtle trade-offs might seasonally determine the proportions of non-MC producers within P. rubescens populations.  相似文献   

2.
Since the cyanobacterium Planktothrix rubescens, which dominates the phytoplankton community in Lake Zurich, is generally considered toxic to zooplankton, we addressed the question whether co-occurring zooplankton species have developed adaptive responses. Artificially shortened filaments (<30 m in length) of P.rubescens significantly reduced survival of Thamnocephalus platyurus (Crustacea, Branchiopoda, Anostraca) naturally occurring in temporary ponds. In contrast to Thamnocephalus, the survival of co-existing zooplankton was unaffected (Eudiaptomus gracilis (or enhanced (Daphnia hyalina and Cyclops abyssorum). High sensitivity to the microcystins of Planktothrix was coupled to strict food avoidance in Eudiaptomus, but not in Thamnocephalus. Daphnia and Cyclops exhibited higher physiological resistance to cyanobacterial toxins, and ingested Planktothrix. For the lake zooplankton species, the feeding rates on high-quality algae were not significantly reduced in the presence of Planktothrix. In order to separate the effects of mechanical interference (filament length) versus toxins, clearance rates on Planktothrix filaments were compared to clearance rates on filaments subjected to toxin extraction. The results show that microcystins are important feeding deterrents against grazing by Daphnia since feeding rates on Planktothrix increased significantly after an aqueous-methanolic extraction of the major part of microcystins. On the other hand, copepods persisted in food avoidance, but exhibited high clearance rates on Planktothrix after a more lipophilic extraction was applied. Both microcystins and a lipophilic, unidentified toxin may contribute to the avoidance behaviour of copepods. For both Daphnia and copepods, the grazing resistance of Planktothrix is mediated by chemical defences rather than by the large size and the rigidity of the filaments.   相似文献   

3.
Sano T  Takagi H  Kaya K 《Phytochemistry》2004,65(14):2159-2162
A Dhb-microcystin variant was isolated from the filamentous cyanobacterium Planktothrix rubescens. Its structure was elucidated as (E)-Dhb-microcystin-HilR ([D-Asp3, (E)-Dhb7]microcystin-HilR) on the basis of spectral data and amino acid analysis after acid hydrolysis.  相似文献   

4.
Microcystins (MCs) are toxic heptapeptides that are produced by filamentous cyanobacteria Planktothrix rubescens and Planktothrix agardhii via nonribosomal peptide synthesis. MCs share a common structure cyclo (-D-Alanine(1)-L-X(2)- D-erythro-beta-iso-aspartic acid(3)-L-Z(4)-Adda(5)-D-Glutamate(6)- N-methyl-dehydroalanine(7)) where X(2) and Z(2) are variable L-amino acids in positions 2, 4 of the molecule. Part of the mcyB gene (1,451 bp) that is involved in the activation of the X(2) amino acid during MC synthesis was sequenced in 49 strains containing different proportions of arginine, homotyrosine, and leucine in position 2 of the MC molecule. Twenty-five genotypes were found that consisted of eight genotype groups (A-H, comprising 2-11 strains) and 17 unique genotypes. P. rubescens and P. agardhii partly consisted of the same mcyB genotypes. The occurrence of numerous putative recombination events that affected all of the genotypes can explain the conflict between taxonomy and mcyB genotype distribution. Genotypes B (homotyrosine and leucine in X(2)) and C (arginine in X(2)) showed higher nonsynonymous/synonymous (d(N)/d(S)) substitution ratios implying a relaxation of selective constraints. In contrast, other genotypes (arginine, leucine, homotyrosine) showed lowest d(N)/d(S) ratios implying purifying selection. Restriction fragment length polymorphism (RFLP) revealed the unambiguous identification of mcyB genotypes, which are indicative of variable X(2) amino acids in eight populations of P. rubescens in the Alps (Austria, Germany, and Switzerland). The populations were found to differ significantly in the proportion of specific genotypes and the number of genotypes that occurred over several years. It is concluded that spatial isolation might favour the genetic divergence of microcystin synthesis in Planktothrix spp.  相似文献   

5.
Blooms of freshwater cyanobacteria are typically accompanied by an important decrease in phytoplankton biodiversity in the water bodies where they occur. This study examines the potential production of growth-inhibiting substances by the toxic, bloom-forming cyanobacterium Planktothrix rubescens, following the observation of physical segregation between this and another cyanobacterium during previously performed mixed-culture competition experiments. Inhibition assays examining the growth of target strains exposed to donor culture filtrates showed that the growth of Planktothrix agardhii TCC 83-2, P. agardhii PMC 75.02 and Mougeotia gracillima TCC 50-2 was significantly inhibited in the presence of culture filtrate from P. rubescens TCC 29-1, isolated from Lake Bourget, France. Filtrates from P. rubescens TCC 69-6 and P. rubescens TCC 69-7, isolated from Lakes Nantua and Paladru (France), respectively, did not, however, inhibit the growth of P. agardhii TCC 83-2. This brief exploration of the allelopathic activity of P. rubescens suggests that it may potentially inhibit coexisting competitors as well as phytoplankton isolated from other freshwater ecosystems, and that this capacity may vary among different strains of Planktothrix. The potential importance of this phenomenon in pelagic competition dynamics is discussed.  相似文献   

6.
7.
8.
It has been suggested that the populations of planktonic cyanobacteria that occupy the metalimnion of stratified lakes during the summer months may be aestivating between the main periods of growth during entrainment in the epilimnion in spring and summer. We determined the vertical distribution of the biomass and daily integral of photosynthesis of the population of Planktothrix ( Oscillatoria ) rubescens in Lake Zürich for 136 d from July to November 1995. The population showed an 80-fold increase during the stratified period but it only doubled over the subsequent period of entrainment. During the first eight days, part of the increase was attributed to recruitment of filaments floating up from greater depths but all of the subsequent production could be accounted for by photoautotrophic growth. On sunny days the biomass-specific photosynthesis of this population reached some of the highest values over the whole period despite its depth (>13 m). On very cloudy days, however, primary productivity was very low and on 4 days, when the mean depth of the population exceeded 15 m, there was no net production. Over the whole period of the study, the accumulated photosynthetic production exceeded the increase in biomass of the population by a factor of 9·5. Although much of this production occurred during the period of entrainment only a small proportion was translated into growth of the population. It is concluded that the growth that takes place in the period of stratification in the metalimnion is essential to subsequent production.  相似文献   

9.
To verify whether the variability in benthic invertebrate communities along the mountainous Czarny Dunajec River is mainly driven by the variation in hydromorphological or water quality, diversity of the communities was determined for 18 cross-sections with 1–5 low-flow channels and compared with the complexity of physical habitat conditions and with physico-chemical water quality. An increase in the complexity of flow pattern in the river was associated with increasing cross-sectional variability in physical habitat parameters. Distinct hydromorphological characteristics of the cross-sections with a given number of low-flow channels were especially pronounced if the analysis was limited to the parameters measured directly, whereas calculated complex hydraulic and sedimentary variables represented information overload. Taxonomic richness of the invertebrate communities was unrelated to physico-chemical water parameters, which consistently pointed to the high water quality. Instead, the richness positively correlated with a degree of variation in physical habitat parameters and was best predicted by the number of low-flow channels in a river cross-section. This study indicates that physical habitat complexity in a mountain river can be considered a proxy to the diversity of its invertebrate communities and that restoration of such complexity will be necessary for future recovery of invertebrate communities in impacted river sections.  相似文献   

10.
11.
To investigate the abundance of active and inactive microcystin genotypes in populations of the filamentous cyanobacterium Planktothrix spp., individual filaments were grown as clonal strains in the laboratory and analysed for microcystin synthetase (mcy) genes and microcystin. Twenty-three green-pigmented strains of P. agardhii originating mostly from shallow water bodies fell into two groups, those possessing mcyA and those lacking mcyA. In contrast, all of the 49 strains that were assigned to the red-pigmented P. rubescens contained mcyA. One strain of P. agardhii and eight strains of P. rubescens contained the total microcystin synthetase gene cluster but were found inactive in microcystin synthesis. To investigate the natural abundance of inactive mcy genotypes in P. rubescens individual filaments sampled from Lake Irrsee and Lake Mondsee (Austria) were analysed directly for the presence of mcyA and microcystin by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. All filaments assigned to P. rubescens contained mcyA. The proportion of inactive microcystin genotypes in populations with a low (Irrsee) or high density (Mondsee) of P. rubescens was 5% and 21%, each. The results of this study demonstrate that P. rubescens typically contain mcy genes whereas P. agardhii have a patchy distribution of mcy genes. In both species microcystin producers co-occur with non-microcystin producers due to the absence/inactivation of mcy genes.  相似文献   

12.
1. Planktothrix rubescens is the dominant photoautotrophic organism in Lake Zürich, a prealpine, deep, mesotrophic freshwater lake with an oxic hypolimnion. Over long periods of the year, P. rubescens accumulates at the metalimnion and growth occurs in situ at irradiance near the photosynthesis compensation point. Experiments were conducted to evaluate the contribution of photoheterotrophy, heterotrophy and light‐dependent uptake of nitrogenous organic compounds to the carbon and nitrogen budget of this cyanobacterium under conditions of restricted availability of light quanta. 2. We used both purified natural populations of P. rubescens from the depth of 9 m and an axenic culture grown under low irradiance at 11 μmol m?2 s?1 on a light : dark cycle (10 : 14 h) to determine the uptake rates of various amino acids, urea, glucose, fructose, acetate and inorganic carbon. The components were added to artificial lake water in low amounts that simulated the naturally occurring potential concentrations. 3. The uptake rates of acetate and amino acids (glycine, serine, glutamate and aspartate) were strongly enhanced at low irradiance as compared with the dark. However, no difference was observed in the uptake of arginine, which was taken up at high rates under both treatments. The uptake rates of glucose, fructose and urea were very low under all conditions. Similar results were obtained for both axenic P. rubescens and for purified natural populations of P. rubescens that were separated from bacterioplankton and other phytoplankton. 4. Metalimnetic P. rubescens that was stratified at low irradiance for weeks exhibited much higher uptake rates than filaments that were entrained in the deepening surface mixed layer and experienced higher irradiance. The added organic compounds contributed up to 62% to the total carbon uptake of metalimnetic P. rubescens. On the basis of a molar C : N ratio of 4.9, the nitrogen uptake as organic compounds satisfied up to 84% of the nitrogen demand. 5. The experiments indicate that photoheterotrophy and light‐dependent uptake of nitrogenous organic compounds may contribute significantly to the carbon and nitrogen budget of filaments at low irradiance typical for growth of P. rubescens in the metalimnion and at the bottom of the surface mixed layer.  相似文献   

13.
The abundances and activities of aerobic methane-oxidizing bacteria (MOB) were compared in depth profiles of littoral and profundal sediments of Lake Constance, Germany. Abundances were determined by quantitative PCR (qPCR) targeting the pmoA gene and by fluorescence in situ hybridization (FISH), and data were compared to methane oxidation rates calculated from high-resolution concentration profiles. qPCR using type I MOB-specific pmoA primers indicated that type I MOB represented a major proportion in both sediments at all depths. FISH indicated that in both sediments, type I MOB outnumbered type II MOB at least fourfold. Results obtained with both techniques indicated that in the littoral sediment, the highest numbers of methanotrophs were found at a depth of 2 to 3 cm, corresponding to the zone of highest methane oxidation activity, although no oxygen could be detected in this zone. In the profundal sediment, highest methane oxidation activities were found at a depth of 1 to 2 cm, while MOB abundance decreased gradually with sediment depth. In both sediments, MOB were also present at high numbers in deeper sediment layers where no methane oxidation activity could be observed.  相似文献   

14.
We examined the effect of light on the heterotrophic activity of the filamentous cyanobacterium Planktothrix rubescens and on its relationship with the accompanying bacteria. In situ leucine uptake by bacteria and cyanobacteria was determined in a subalpine mesotrophic lake, and natural assemblages from the zone of maximal P. rubescens abundances were incubated for 2 days at contrasting light regimes (ambient, 100× increased, dark). Planktothrix rubescens from the photic zone of the lake incorporated substantially more leucine, but some heterotrophic activity was maintained in filaments from the hypolimnion. Exposure of cyanobacteria to increased irradiance or darkness resulted in significantly lower leucine incorporation than at ambient light conditions. Highest abundances and leucine uptake of Betaproteobacteria from the genus Limnohabitans were found in the accompanying microflora at suboptimal irradiance levels for P. rubescens or in dark incubations. Therefore, two Limnohabitans strains (representing different species) were co-cultured with axenic P. rubescens at different light conditions. The abundances and leucine incorporation rates of both strains most strongly increased at elevated irradiance levels, in parallel to a decrease of photosynthetic pigment fluorescence and the fragmentation of cyanobacterial filaments. Our results suggest that Limnohabitans spp. in lakes might profit from the presence of physiologically stressed P. rubescens.  相似文献   

15.
The vertical and horizontal distribution of the cyanobacterium, Planktothrix rubescens, was studied in a deep alpine lake (Lac du Bourget) in a 2-year monitoring program with 11 sampling points, and a 24-h survey at one sampling station. This species is known to proliferate in the metalimnic layer of numerous deep mesotrophic lakes in temperate areas, and also to produce hepatotoxins. When looking at the distribution of P. rubescens at the scale of the entire lake, we found large variations (up to 10 m) in the depth of the biomass peak in the water column. These variations were closely correlated to isotherm displacements. We also found significant variations in the distribution of the cyanobacterial biomass in the northern and southern parts of the lake. We used a physical modeling approach to demonstrate that two internal wave modes can explain these variations. Internal waves are generated by wind events, but can still be detected several days after the end of these events. Finally, our 24-h survey at one sampling point demonstrated that the V1H1 sinusoidal motion could evolve into nonlinear fronts. All these findings show that internal waves have a major impact on the distribution of P. rubescens proliferating in the metalimnic layer of a deep lake, and that this process could influence the growth of this species by a direct impact on light availability.  相似文献   

16.
17.
Filaments of Oscillatoria rubescens stratified in the metalimnion of Crooked Lake, Indiana at depths of 6–9 m, where the incident light intensity averaged 2% of the surface intensity. Buoyancy (due to gas vesicles) was regulated in response to light intensity, and increased turgor pressure generated at high light intensity could contribute to the collapse of gas vesicles. Filaments exposed to irradiances of 20–50 µE m-2 s-1 had neutral buoyancy. As nutrient availability was increased (by resuspending filaments in nutrient-rich water from the hypolimnion or by preventing CaCO3 precipitation with a calcium chelator), higher light intensities were necessary for buoyancy loss and increased turgor.

A series of traps were placed in the lake to intercept floating and sinking filaments. Migration activity (both floating and sinking) was greatest 1 m above the most dense concentration of O. rubescens. These results, together with vertical profiles of primary production, suggest that maximum production by O. rubescens occurred above the population maximum in the water column.  相似文献   

18.
The rates of uptake of five amino acids--alanine, glutamate, glycine, leucine and serine--by axenic cultures of the cyanobacterium Planktothrix rubescens were measured over a range of irradiances using the (14)C-labelled amino acids at the nanomolar concentrations observed in Lake Zürich. The rates in the light exceeded the dark rates by as much as two- to ninefold. The light-affinity constants for stimulation were similar, indicating a similar process for each of the five amino acids. The E(k) (light saturation irradiance) for light stimulation was only 1 micromol m(-2) s(-1), less than the compensation point for photosynthesis and autotrophic growth, and much lower than the E(k) for either process. The E(k) for amino acid uptake was also less than the irradiance at which filaments obtain neutral buoyancy, which determines the depth at which they stratify and the irradiance they receive. This indicates that stimulation of amino acid uptake by light of low irradiances provides a mechanism for supplementing growth of filaments stratifying deep in the metalimnion, which, while able to grow at low irradiances, are often left with insufficient light to sustain them. Acetate uptake was also stimulated by light, but the kinetics differed.  相似文献   

19.
The River Warnow is the drinking water source for the city of Rostock. Its eutrophic status is accompanied by high amounts of bacteria, which may reach up to 24 x 10(6) cells mL(-1) as recorded during a seasonal study in 2002. Because the river is eutrophic and also heavily loaded with organic matter, this burden is a problem for drinking water purification, as it must be removed completely to not trigger new bacterial growth in the pipeline network. Therefore, restoration measures in the river have to be planned, and bacteria have to be favored as decomposers. That includes the investigation of the physiological state of bacteria in situ. Viable and active cells in the lower reaches of River Warnow were estimated using a broad set of methods. Intact bacteria were investigated by the LIVE/DEAD BacLight bacterial viability kit, containing a mixture of permeant and impermeant nucleic acid stains. Cells with ribosomes were visualized by fluorescence in situ hybridization with the EUB338 oligonucleotide probe. Intact cells and ribosome-containing bacteria represented 24% of total numbers stained by 4'6,-diamidino-2-phenylindole (DAPI) or 66 and 62%, respectively, in relation to all bacteria visualized by the LIVE/DEAD kit. Both fractions were considered as viable, although the fraction of RIB + bacteria is most likely underestimated by the protocol applied. 5-Cyano-2,3-ditolyltetrazolium chloride (CTC) was applied to mark respiring bacteria. The esterase substrate CellTracker Green 5-chloromethylfluorescein diacetate showed cells with intracellular hydrolytic activity. Whereas 1.5% of DAPI-stained bacteria were observed as respiring, 3.8% exhibited intracellular hydrolytic activity on average. If these active fractions were calculated as the percentages of intact cells, much higher fractions of 5.4% were respiring and 16% hydrolytic. Temperature was a main factor influencing total and viable cell numbers simultaneously. The results confirm that there are different states of viable and active cells in natural bacterioplankton communities. However, it remains unclear why fractions of viable and active cells were rather low in this eutrophic river in comparison to similar waters. We recommend to carefully address cells as viable in contrast to nonviable, i.e., dead. As viable cells may be active or inactive with respect to many different activities, e.g., substrate uptake, respiration, hydrolysis, and cell deviation, it is necessary to choose the method to visualize active cells according to the question to be answered.  相似文献   

20.
The variability of spatial distribution and the determinism of cyanobacterial blooms, as well as their impact at the lake scale, are still not understood, partly due to the lack of long-term climatic and environmental monitoring data. The paucity of these data can be alleviated by the use of proxy data from high-resolution sampling of sediments. Coupling paleolimnological and molecular tools and using biomarkers such as preserved DNA are promising approaches, although they have not been performed often enough so far. In our study, a quantitative PCR (qPCR) technique was applied to enumerate total cyanobacterial and total and toxic Planktothrix communities in preserved DNA derived from sediments of three lakes located in the French Alps (Lake Geneva, Lake Bourget, and Lake Annecy), containing a wide range of cyanobacterial species. Preserved DNA from lake sediments was analyzed to assess its quality, quantity, and integrity, with further application for qPCR. We applied the qPCR assay to enumerate the total cyanobacterial community, and multiplex qPCR assays were applied to quantify total and microcystin-producing Planktothrix populations in a single reaction tube. These methods were optimized, calibrated, and applied to sediment samples, and the specificity and reproducibility of qPCR enumeration were tested. Accurate estimation of potential inhibition within sediment samples was performed to assess the sensitivity of such enumeration by qPCR. Some precautions needed for interpreting qPCR results in the context of paleolimnological approaches are discussed. We concluded that the qPCR assay can be used successfully for the analysis of lake sediments when DNA is well preserved in order to assess the presence and dominance of cyanobacterial and Planktothrix communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号