首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied 42 individuals, including 8 patients with either complete or partial syndrome of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), 8 patients with either complete or partial syndrome of myoclonic epilepsy with ragged-red fibers (MERRF) and 26 maternal family members who carried either the A3243G or A8344G mutation of mitochondrial DNA (mtDNA). Clinical manifestations and prognosis were followed up in the patients harboring the A3243G or A8344G mutation. The relationship between clinical features and proportions of mutant mtDNAs in muscle biopsies, blood cells and/or hair follicles was studied. In the 8 regularly followed patients with the A3243G mutation, 4 died within 1 month to 7 years due to status epilepticus and/or recurrent stroke-like episodes. Two patients developed marked mental deterioration and 2 remained stationary. All of the patients harboring the A8344G mutation were stable or deteriorated slightly, except for 1 patient who died due to brain herniation after putaminal hemorrhage. The A3243G and A8344G mtDNA mutations were heteroplasmic in the muscle biopsies, blood cells and hair follicles of both the probands and their maternal family members. The mean proportion of A3243G mutant mtDNA in the muscle biopsies of the patients with MELAS syndrome (68.5 ± 21.3%, range 33–92%) was significantly higher than that of the asymptomatic family members (37.1 ± 12.6%, range 0–51%). The average proportions of A8344G mutant mtDNA in the muscle biopsies (90.1 ± 3.9%, range 89–95%) and hair follicles (93.9 ± 6.4%, range 84–99%) of the patients with MERRF syndrome were also significantly higher than those of the asymptomatic family members (muscle: 40.3 ± 39.5%, range 1–80%; hair follicles: 51.0 ± 44.5%, range 0.1–82%). We concluded that measurement of the proportion of mutant mtDNA in muscle biopsies may provide useful information in the identification of symptomatic patients with mitochondrial encephalomyopathies. For patients with the A3243G mutation, the prognosis was related to status epilepticus and the number of recurrent stroke-like episodes and was much worse than for patients with the A8344G mutation of mtDNA, who had stable or slowly deteriorating clinical courses.  相似文献   

2.
The MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) is most commonly caused by the 3243A→G mutation in mitochondrial DNA, resulting in impaired mitochondrial protein synthesis and decreased activities of the respiratory chain complexes. These defects may cause a reduced capacity for ATP synthesis and an increased rate of production of reactive oxygen species. Myoblasts cultured from controls and patients carrying the 3243A→G mutation were used to measure ATP, ADP, catalase and superoxide dismutase, which was also measured from blood samples. ATP and ADP concentrations were decreased in myoblasts with the 3243A→G mutation, but the ATP/ADP ratio remained constant, suggesting a decrease in the adenylate pool. The superoxide dismutase and catalase activities were higher than in control cells, and superoxide dismutase activity was slightly, but not significantly higher in the blood of patients with the mutation than in controls. We conclude that impairment of mitochondrial ATP production in myoblasts carrying the 3243A→G mutation results in adenylate catabolism, causing a decrease in the total adenylate pool. The increase in superoxide dismutase and catalase activities could be an adaptive response to increased production of reactive oxygen species due to dysfunction of the mitochondrial respiratory chain.  相似文献   

3.
Qi Y  Zhang Y  Wang Z  Yang Y  Yuan Y  Niu S  Pei P  Wang S  Ma Y  Bu D  Zou L  Fang F  Xiao J  Sun F  Zhang Y  Wu Y  Wang S  Xiong H  Wu X 《Mitochondrion》2007,7(1-2):147-150
To investigate the spectrum of common mitochondrial mutations in Northern China during the years of 2000-2005, 552 patients of mitochondrial encephalomyopathies clinically diagnosed as MELAS, MERRF or Leigh's syndrome, 14 cases of LHON and 46 cases of aminoglycoside induced deafness along with their family members, accepted routine point mutation tests at nucleotide positions 3243, 8344, 8993, 11778 or 1555 in mitochondrial genome. PCR-RFLP analysis, site-specific PCR and PCR-sequencing methods were used to identify the mutations. Fifty-seven cases with A3243G mutation, 4 cases with A8344G, 2 cases with T8993C and 1 case with T8993G were identified from the 552 encephalomyopathy patients. In addition, one case with G11778A was found from the 14 cases of LHON, and 5 cases with A1555G from the 46 cases of aminoglycoside ototoxicity patients. Additional screening for T8356G and T3271C merely had limited significance for the diagnosis of MERRF and MELAS. Differential diagnosis among mitochondrial encephalomyopathies was often complicated due to many similar clinical manifestations. For A3243G mutation, the proportion of mutant mtDNA was not related to severity of the disease but to the age of onset.  相似文献   

4.
The genotype-phenotype relationship in diseases with mtDNA point mutations is still elusive. The maintenance of wild-type mtDNA copy number is essential to the normal mitochondrial oxidative function. This study examined the relationship between mtDNA copy number in blood and urine and disease severity of the patients harboring A3243G mutation. We recruited 115 A3243G patients, in which 28 were asymptomatic, 42 were oligo-symptomatic, and 45 were poly-symptomatic. Increase of total mtDNA copy number without correlation to the proportion of mutant mtDNA was found in the A3243G patients. Correlation analyses revealed that wild-type mtDNA copy number in urine was the most important factor correlated to disease severity, followed by proportion of mutant mtDNA in urine and proportion of mutant mtDNA in blood. Wild-type copy number in urine negatively correlated to the frequencies of several major symptoms including seizures, myopathy, learning disability, headache and stroke, but positively correlated to the frequencies of hearing loss and diabetes. Besides proportion of mutant mtDNA in urine, wild-type copy number in urine is also an important marker for disease severity of A3243G patients.  相似文献   

5.
刘莉  邵宇权  张宝荣  蒋萍萍  都爱莲  管敏鑫 《遗传》2014,36(11):1159-1167
线粒体脑肌病伴高乳酸血症和卒中样发作综合征(Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes, MELAS)是一种异质性很强的遗传代谢性疾病,而位于tRNA Leu(UUR)基因的A3243G突变是该疾病最常见的致病位点。文章对6个汉族MELAS家系的先证者进行了临床病理、分子遗传学特征分析,探讨了线粒体基因多态性对MELAS病人表型可能产生的影响。线粒体基因检测结果显示,4例先证者为A3243G阳性,其异质性比例介于29%~59%之间,临床症状的严重性和异质性程度大致呈正相关;2例MELAS/Leigh叠加综合征先证者为A3243G阴性,复发次数和严重程度重于其他4例先证者,其中1例先证者的血液和肌肉组织中发现ND5基因T13094C突变,该位点已报道与MELAS/Leigh叠加综合征、小脑共济失调相关。另外,线粒体基因全序列测序结果显示:除主要致病突变外,还存在多个与耳聋、癫痫、糖尿病、心肌病、Leigh综合征相关的线粒体基因多态位点,临床症状严重的患者其多态位点也更多。这表明MELAS综合征的复杂表型不仅受致病突变位点的直接影响,也可能受到其他与疾病相关的多态性位点的修饰作用。  相似文献   

6.
The MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) is most commonly caused by the 3243A-->G mutation in mitochondrial DNA, resulting in impaired mitochondrial protein synthesis and decreased activities of the respiratory chain complexes. These defects may cause a reduced capacity for ATP synthesis and an increased rate of production of reactive oxygen species. Myoblasts cultured from controls and patients carrying the 3243A-->G mutation were used to measure ATP, ADP, catalase and superoxide dismutase, which was also measured from blood samples. ATP and ADP concentrations were decreased in myoblasts with the 3243A-->G mutation, but the ATP/ADP ratio remained constant, suggesting a decrease in the adenylate pool. The superoxide dismutase and catalase activities were higher than in control cells, and superoxide dismutase activity was slightly, but not significantly higher in the blood of patients with the mutation than in controls. We conclude that impairment of mitochondrial ATP production in myoblasts carrying the 3243A-->G mutation results in adenylate catabolism, causing a decrease in the total adenylate pool. The increase in superoxide dismutase and catalase activities could be an adaptive response to increased production of reactive oxygen species due to dysfunction of the mitochondrial respiratory chain.  相似文献   

7.
Using RNase protection analysis, we found a novel C to G mutation at nucleotide position 3093 of mitochondrial DNA (mtDNA) in a previously reported 35-year-old woman exhibiting clinical features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome together with diabetes mellitus, hyperthyroidism and cardiomyopathy. The patient also had an A3243G mutation in the tRNA(Leu(UUR)) gene and a 260-base pair duplication in the D-loop of mtDNA. The fibroblasts of the patient were cultured and used for the construction of cybrids using cytoplasmic transfer of the patient's mtDNA to the mtDNA-less rho(0) cells. RNA isolated from the cybrids was subjected to RNase protection analysis, and a C3093G transversion at the 16S rRNA gene and a MELAS-associated A3243G mutation of mtDNA were detected. The novel C3093G mutation together with the A3243G transition were found in muscle biopsies, hair follicles and blood cells of this patient and also in her skin fibroblasts and cybrids. The proportion of the C3093G mutant mtDNA in muscle biopsies of the patient was 51%. In contrast, the mutation was not detected in three sons of the proband. To characterize the impact of the mtDNA mutation-associated defects on mitochondrial function, we determined the respiratory enzyme activities of the primary culture of fibroblasts established from the proband, her mother and her three sons. The proportions of mtDNA with the C3093G transversion and the A3243G transition in the fibroblasts of the proband were 45 and 58%, respectively. However, the fibroblasts of the proband's mother and children harbored lower levels of mtDNA with the A3243G mutation but did not contain the C3093G mutation. The complex I activity in the proband's fibroblasts was decreased to 47% of the control but those of the fibroblasts of the mother and three sons of the proband were not significantly changed. These findings suggest that the C3093G transversion together with the A3243G transition of mtDNA impaired the respiratory function of mitochondria and caused the atypical MELAS syndrome associated with diabetes mellitus, hyperthyroidism and cardiomyopathy in this patient.  相似文献   

8.
We report here the characterization of a four-generation Han Chinese family with maternally transmitted diabetes mellitus. Six (two males/four females) of eight matrilineal relatives in this family exhibited diabetes. The age of onset in diabetes varies from 15 years to 33 years, with an average of 26 years. Two of affected matrilineal relatives also exhibited hearing impairment. Molecular analysis of mitochondrial DNA (mtDNA) showed the presence of heteroplasmic tRNA(Lue(UUR)) A3243G mutation, ranging from 35% to 58% of mutations in blood cells of matrilineal relatives. The levels of heteroplasmic A3243G mutation seem to be correlated with the severity and age-at-onset of diabetes in this family. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the A3243G mutation and 38 other variants belonging to the Eastern Asian haplogroup M7C. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, the A3243G mutation is the sole pathogenic mtDNA mutation associated with diabetes in this Chinese family.  相似文献   

9.
Thirty-five mitochondrial (mt) DNAs from Spain that harbor the mutation A3243G in association with either MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome or a wide array of disease phenotypes (ranging from diabetes and deafness to a mixture of chronic progressive external ophthalmoplegic symptoms and strokelike episodes) were studied by use of high-resolution restriction fragment length polymorphism analysis and control-region sequencing. A total of 34 different haplotypes were found, indicating that all instances of the A3243G mutation are probably due to independent mutational events. Haplotypes were distributed into 13 haplogroups whose frequencies were close to those of the general Spanish population. Moreover, there was no statistically significant difference in haplogroup distribution between patients with MELAS and those with disease phenotypes other than MELAS. Overall, these data indicate that the A3243G mutation harbors all the evolutionary features expected from a severely deleterious mtDNA mutation under strong negative selection, and they reveal that European mtDNA backgrounds do not play a substantial role in modulating the mutation's phenotypic expression.  相似文献   

10.
To evaluate eight frequently encountered mitochondrial DNA (mtDNA) point mutations (A3243G, T8993G/C, A8344G, A1555G, G11778A, G3460A and T14484C) in Chinese, we recruited 1559 sporadic patients suspected of mitochondrial diseases and 206 family members. In suspected patients, 158 cases were detected with one of these eight mtDNA mutations (10.1%). A3243G was the most common mtDNA mutation both in suspected patients (9.4%) and in the relatives (34.2%). In addition, the ratios of A3243G (mutant/wild-type) and A8344G were significantly correlated with the patients’ age of examination. Moreover, in 76 unrelated probands, the ratio of A3243G was correlated well with their seizures and myopathies.  相似文献   

11.
The pathomechanisms underlying oxidative phosphorylation (OXPHOS) diseases are not well-understood, but they involve maladaptive changes in mitochondria-nucleus communication. Many studies on the mitochondria-nucleus cross-talk triggered by mitochondrial dysfunction have focused on the role played by regulatory proteins, while the participation of miRNAs remains poorly explored. MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is mostly caused by mutation m.3243A>G in mitochondrial tRNALeu(UUR) gene. Adverse cardiac and neurological events are the commonest causes of early death in m.3243A>G patients. Notably, the incidence of major clinical features associated with this mutation has been correlated to the level of m.3243A>G mutant mitochondrial DNA (heteroplasmy) in skeletal muscle. In this work, we used a transmitochondrial cybrid model of MELAS (100% m.3243A>G mutant mitochondrial DNA) to investigate the participation of miRNAs in the mitochondria-nucleus cross-talk associated with OXPHOS dysfunction. High-throughput analysis of small-RNA-Seq data indicated that expression of 246 miRNAs was significantly altered in MELAS cybrids. Validation of selected miRNAs, including miR-4775 and miR-218-5p, in patient muscle samples revealed miRNAs whose expression declined with high levels of mutant heteroplasmy. We show that miR-218-5p and miR-4775 are direct regulators of fetal cardiac genes such as NODAL, RHOA, ISL1 and RXRB, which are up-regulated in MELAS cybrids and in patient muscle samples with heteroplasmy above 60%. Our data clearly indicate that TGF-β superfamily signaling and an epithelial-mesenchymal transition-like program are activated in MELAS cybrids, and suggest that down-regulation of miRNAs regulating fetal cardiac genes is a risk marker of heart failure in patients with OXPHOS diseases.  相似文献   

12.
The mitochondrial tRNA(Leu(UUR)) gene (MTTL) is a hot spot for pathogenic mutations that are associated with mitochondrial diseases with various clinical features. Among these mutations, the A3243G mutation was associated with various types of mitochondrial multisystem disorders, such as MIDD, MELAS, MERRF, PEO, hypertrophic cardiomyopathy, and a subtype of Leigh syndrome. We screened 128 Tunisian patients for the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. This screening was carried out using PCR-RFLP with the restriction endonuclease ApaI. None of the 128 patients or the 100 controls tested were found to carry the mitochondrial A3243G mutation in the tRNA(Leu(UUR)) gene in homoplasmic or heteroplasmic form. After direct sequencing of the entire mitochondrial tRNA(Leu(UUR)) gene and a part of the mitochondrial NADH dehydrogenase 1, we found neither mutations nor polymorphisms in the MTTL1 gene in the tested patients and controls, and we confirmed the absence of the A3243G mutation in this gene. We also found a T3396C transition in the ND1 gene in one family with NSHL which was absent in the other patients and in 100 controls. Neither polymorphisms nor other mutations were found in the mitochondrial tRNA(Leu(UUR)) gene in the tested patients.  相似文献   

13.
Disease-causing mutations in mitochondrial DNA (mtDNA) are typically heteroplasmic and therefore interpretation of genetic tests for mitochondrial disorders can be problematic. Detection of low level heteroplasmy is technically demanding and it is often difficult to discriminate between the absence of a mutation or the failure of a technique to detect the mutation in a particular tissue. The reliable measurement of heteroplasmy in different tissues may help identify individuals who are at risk of developing specific complications and allow improved prognostic advice for patients and family members. We have evaluated Pyrosequencing technology for the detection and estimation of heteroplasmy for six mitochondrial point mutations associated with the following diseases: Leber's hereditary optical neuropathy (LHON), G3460A, G11778A, and T14484C; mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS), A3243G; myoclonus epilepsy with ragged red fibers (MERRF), A8344G, and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP)/Leighs: T8993G/C. Results obtained from the Pyrosequencing assays for 50 patients with presumptive mitochondrial disease were compared to those obtained using the commonly used diagnostic technique of polymerase chain reaction (PCR) and restriction enzyme digestion. The Pyrosequencing assays provided accurate genotyping and quantitative determination of mutational load with a sensitivity and specificity of 100%. The MELAS A3243G mutation was detected reliably at a level of 1% heteroplasmy. We conclude that Pyrosequencing is a rapid and robust method for detecting heteroplasmic mitochondrial point mutations.  相似文献   

14.
The m.3243A>G variant in the mitochondrial tRNA(Leu(UUR)) gene is a common mitochondrial DNA (mtDNA) mutation. Phenotypic manifestations depend mainly on the heteroplasmy, i.e. the ratio of mutant to normal mtDNA copies. A high percentage of mutant mtDNA is associated with a severe, life-threatening neurological syndrome known as MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). MELAS is described as a neurovascular disorder primarily affecting the brain and blood vessels, but the pathophysiology of the disease is poorly understood. We developed a series of cybrid cell lines at two different mutant loads: 70% and 100% in the nuclear background of a neuroblastoma cell line (SH-SY5Y). We investigated the impact of the mutation on the metabolism and mitochondrial respiratory chain activity of the cybrids. The m.3243A>G mitochondrial mutation induced a metabolic switch towards glycolysis in the neuronal cells and produced severe defects in respiratory chain assembly and activity. We used two strategies to compensate for the biochemical defects in the mutant cells: one consisted of lowering the glucose content in the culture medium, and the other involved the addition of l-arginine. The reduction of glucose significantly shifted the 100% mutant cells towards the wild-type, reaching a 90% mutant level and restoring respiratory chain complex assembly. The addition of l-arginine, a nitric oxide (NO) donor, improved complex I activity in the mutant cells in which the defective NO metabolism had led to a relative shortage of NO. Thus, metabolically induced heteroplasmy shifting and l-arginine therapy may constitute promising therapeutic strategies against MELAS.  相似文献   

15.
It is widely held that changes in the distribution of mutant mtDNAs underlie the progressive nature of mtDNA diseases, but there are few data documenting such changes. We compared the levels of 3243 A-->G mutant mtDNA in blood at birth from Guthrie cards and at the time of diagnosis in a blood DNA sample from patients with mitochondrial encephalopathy, lactic acidosis, and strokelike episodes (MELAS) syndrome. Paired blood DNA samples separated by 9-19 years were obtained from six patients with MELAS. Quantification of mutant load, by means of a solid-phase minisequencing technique, demonstrated a decline (range 12%-29%) in the proportion of mutant mtDNA in all cases (P=.0015, paired t-test). These results suggest that mutant mtDNA is slowly selected from rapidly dividing blood cells in MELAS.  相似文献   

16.
Summary The mitochondrial DNA (mtDNA) of Japanese patients suffering from the syndrome of mitochondrial myopathy, encephalopathy, lactic acidosis and strokelike episodes (MELAS) exhibits a specific heteroplasmic AG transition in the tRNALeu at position 3243. In this study, we investigated mtDNA from skeletal muscle, cardiac muscle, brain, liver, diaphragm, fibroblasts and blood cells of four Caucasians with MELAS, one younger healthy sister of two MELAS patients, and eleven controls. We found that 1) the mutation was present in all investigated tissues of Caucasians with MELAS but not in controls, 2) within a single patient, the tissue-specific variation of the copy number of mutated mtDNA covered the same range as in the skeletal muscle of different patients, 3) the mutation was also present in the blood cells of the healthy sister of two MELAS siblings.  相似文献   

17.
The total sequences of mitochondrial DNA were determined in two patients with juvenile-onset mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) due to Complex I deficiency. Patients 1 and 2 had three and two unique point mutations, respectively, causing replacement of phylogenically conserved amino acids. A transition from G to A was found at nucleotide position 5601 in the alanine tRNA gene of Patient 2, and a transition from A to G was found at 3243 in the leucine (UUR) tRNA gene of both patients. The latter mutation located at the phylogenically conserved 5' end of the dihydrouridine loop of the tRNA molecule, and was present in two patients with adult-onset MELAS and absent in controls. These results indicate that a mass of mtDNA mutations including the A-to-G transition in the tRNA(Leu) gene is a genetic cause of MELAS.  相似文献   

18.
Wang ZC  Wang XM  Jin YX  Jiao BH  Xu F  Miao MY  Zhu KJ 《IUBMB life》2003,55(3):139-144
The pathogenetic mechanism of the most extensively investigated A3243G mutated tRNALeu(UUR) gene, which causes the MELAS encephalomyopathy, maternally inherited diabetes, or chronic progressive external ophlthalmoplegia, is still unresolved, despite the numerous investigations on the topic. Previous evidences presented in published work suggested that the mitochondrial DNA harboring A3243G mutation result decreases in the rates of mitochondrial protein synthesis. To search for differences in aminoacylation of mitochondrial DNA-encoded wild-type and mutant human tRNALeu(UUR), we have expressed and purified the two kinds of tRNAsLeu(UUR), and have expressed human mitochondrial leucyl-tRNA synthetase for in vitro assays of aminoacylation of wild-type and mutant human tRNALeu(UUR). The results indicate human mitochondrial tRNALeu(UUR) gene A3243G point mutant can remarkably reduce its aminoacylation, suggesting it could be one of the mechanisms that the mutation can produce in such clinical phenotypes.  相似文献   

19.
Studies in vitro have shown that a respiratorydeficient phenotype is expressed by cells when the proportion of mtDNA with a disease-associated mutation exceeds a threshold level, but analysis of tissues from patients with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS) have failed to show a consistent relationship between the degree of heteroplasmy and biochemical expression of the defect. One possible explanation for this phenomenon is that there is variation of heteroplasmy between individual cells that is not adequately reflected by the mean heteroplasmy for a tissue. We have confirmed this by study of fibroblast clones from subjects heteroplasmic for the MELAS 3243 (A G) mtDNA mutation. Similar observations were made with fibroblast clones derived from two subjects heteroplasmic for the 11778 (GA) mtDNA mutation of Leber's hereditary optic neuropathy. For the MELAS 3243 mutation, the distribution of mutant mtDNA between different cells was not randomly distributed about the mean, suggesting that selection against cells with high proportions of mutant mtDNA had occurred. To explore the way in which heteroplasmic mtDNA segregates in mitosis we followed the distribution of heteroplasmy between clones over approximately 15 generations. There was either no change or a decrease in the variance of intercellular heteroplasmy for the MELAS 3243 mutation, which is most consistent with segregation of heteroplasmic units of multiple mtDNA molecules in mitosis. After mitochondria from one of the MELAS 3243 fibroblast cultures were transferred to a mitochondrial DNA-free (0) cell line derived from osteosarcoma cells by cytoplast fusion, the mean level and intercellular distribution of heteroplasmy was unchanged. We interpret this as evidence that somatic segregation (rather than nuclear background or cell differentiation state) is the primary determinant of the level of heteroplasmy.  相似文献   

20.
A mutation in mitochondrial DNA, which was originally identified in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), can be associated with a subtype of diabetes mellitus. To determine the molecular and histological basis of impaired insulin secretion in the subjects with this mutation, we studied autopsy pancreata specimens from eight subjects diagnosed as having MELAS. The 3243 bp mutation was identified in seven out of eight pancreata examined. Immunohistochemical studies demonstrated a reduction in total islet mass, and in the numbers of both B and A cells. No evidence of insulitis or apoptosis was found. These data suggested that the 3243 bp mutation may cause the reduction of islet cells, mainly through mechanisms other than autoimmune destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号