首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Flowering and apical meristem growth dynamics   总被引:2,自引:0,他引:2  
The shoot apical meristem generates stem, leaves, and lateralshoot meristems during the entire shoot ontogeny. Vegetativeleaves are generated by the meristem in the vegetative developmentalphase, while in the reproductive phase either bracts subtendinglateral flower primordia (or paraclades), or perianth and strictlyreproductive organs are formed. Meristem growth is fully characterizedby the principal growth rates, directions, volumetric, and arealgrowth rates. Growth modelling or sequential in vivo methodsof meristem observation complemented by growth quantificationallow the above growth variables to be estimated. Indirectly,growth is assessed by cell division rates and other cell cycleparameters. Temporal and spatial changes of growth and geometrytake place at the meristem during the transition from the vegetativeto the reproductive phase. During the vegetative phase, meristemgrowth is generally indeterminate. In the reproductive phaseit is almost always determinate, but the extent of determinacydepends on the inflorescence architecture. In the vegetativephase the central meristem zone is the slowest growing region.The transition from the vegetative to the reproductive phaseis accompanied by an increase in mitotic activity in this zone.The more determinate is the meristem growth, the stronger isthis mitotic activation. However, regardless of the extent ofthe activation, in angiosperms the tunica/corpus structure ofthe meristem is preserved and therefore the mitotic activityof germ line cells remains relatively low. In the case of thethoroughly studied model angiosperm plant Arabidopsis thaliana,it is important to recognize that the flower primordium developsin the axil of a rudimentary bract. Another important featureof growth of the inflorescence shoot apical meristem is theheterogeneity of the peripheral zone. Finally, the role of mechanicalfactors in growth and functioning of the meristem needs furtherinvestigation. Key words: Flower primordium, geometry, growth, inflorescence, shoot apical meristem, transition from vegetative to reproductive phase Received 4 October 2007; Revised 5 November 2007 Accepted 6 November 2007  相似文献   

2.
The evolution of inflorescence size, a key trait in reproductive success, was studied in the genus Acer under a perspective of adaptive evolution. Breeding systems, hypothesized to indicate different levels of mating competition, were considered as the selective scenarios defining different optima of inflorescence size. Larger inflorescences, which increase male fitness by generating larger floral displays, were hypothesized to be selected under scenarios with higher competition with unisexuals. An identical approach was used to test if the same selective regimes could be driving the evolution of leaf size, a vegetative trait that was found to be correlated with inflorescence size. A Brownian motion model of inflorescence/leaf-size evolution (which cannot distinguish between changes caused by pure drift processes and changes caused by natural selection in rapidly and randomly changing environments) was compared with several adaptive Ornstein-Uhlenbeck (OU) models, which can quantify the effects of both stochasticity and natural selection. The best-fitting model for inflorescence/leaf-size evolution was an OU model with three optima that increased with the level of mating competition. Both traits evolved under the same selective regimes and in the same direction, confirming a pattern of correlated evolution. These results show that a selective regime hypothetically related to the evolution of a reproductive trait can also explain the evolution of a vegetative trait.  相似文献   

3.
Bonhomme  F.  Sommer  H.  Bernier  G.  Jacqmard  A. 《Plant molecular biology》1997,34(4):573-582
SaMADS D gene of Sinapis alba was isolated by screening a cDNA library from young inflorescences with a mixture of MADS-box genes of Antirrhinum majus (DEF, GLO, SQUA) as probe. Amino acid sequence comparison showed a high degree of similarity between the SaMADS D and AGL9, DEFH200, TM5, FBP2 and DEFH 72 gene products. Analysis of the SaMADS D gene expression by in situ hybridization reveals a novel expression pattern for a MADS-box gene and suggests a dual function for this gene: first, as a determinant in inflorescence meristem identity since it starts to be expressed directly beneath the inflorescence meristem at the time of initiation of the first floral meristem, is no longer expressed in the inflorescence meristem forced to revert to production of leafy appendages, and is expressed again when the reverted meristem resumes floral meristem initiation, and, second, as an interactor with genes specifying floral organ identity since it is expressed in the floral meristem from the stage of sepal protrusion.  相似文献   

4.
5.
6.
TERMINAL FLOWER 1 (TFL1)/CENTRORADIALIS (CEN)-like genes play important roles in determining plant architecture, mainly by controlling the timing of phase transition. To investigate the possibility of similar mechanisms operating in the control of inflorescence architecture in rice, we analysed the functions of RCN1 and RCN2, rice TFL1/CEN homologs. Constitutive overexpression of RCN1 or RCN2 in Arabidopsis caused a late-flowering and highly branching phenotype, indicating that they possess conserved biochemical functions as TFL1. In 35S::RCN1 and 35S::RCN2 transgenic rice plants, the delay of transition to the reproductive phase was observed. The transgenic rice plants exhibited a more branched, denser panicle morphology. Detailed observation of the panicle structure revealed that the phase change from the branch shoot to the floral meristem state was also delayed, leading to the generation of higher-order panicle branches. These results suggest rice has a pathway that can respond to the overexpressed TFL1/CEN-like functions, and the molecular mechanisms controlling the phase transition of meristems are conserved between grass and dicot species, at least to some extent.  相似文献   

7.
8.
A model of growth and reproduction in annual plants was developed by Cohen (1971, J. Theor. Biol.33, 299–307) to determine the allocation strategy which maximizes seed yield. The model divides the plant into vegetative and reproductive parts and predicts that yield is maximized by a strategy consisting of a switch from purely vegetative to strictly reproductive growth. We generalize Cohen's model to include vegetative and reproductive loss terms. Both growth and loss rates are allowed to vary with time. Using optimal control theory we find that seed yield is maximized by a strategy consisting of multiple switches between vegetative and reproductive growth, for certain ranges of the model parameters. In natural systems a predictable vegetative loss burst may be necessary to promote multiple switches.  相似文献   

9.
10.
Summary The hypothesis tested was that lack of photoperiod gene activity allows inherent partitioning of photosynthate to continued growth of the earliest potential buds, flowers, pods, and seeds (the organs that give rise to the yield). Alternatively, and competitively, photoperiod gene activity causes the photosynthate to be partitioned predominantly toward continued growth of new vegetative organs plus later initiation of more reproductive (yield) organs. This hypothesis was tested by comparing an insensitive and a photoperiod-sensitive bean (Phaseolus vulgaris L.) cultivar and their F1 with F2 segregates of undetermined genotype. Randomly derived homozygous F8 segregates were also compared. The F8 generation included one photoperiod-insensitive and one photoperiod-sensitive genotype in a 1:1 ratio, which verified control by one photoperiod gene. Under long daylength (LD), in addition to early versus late flowering and maturity, the two genotypes expressed opposite levels of 23 other traits that would be changed by competitive partitioning of the photosynthate. In contrast, under short daylength (SD), both genotypes flowered and matured early, and both expressed the levels for all 25 traits that the photoperiod-insensitive genotype expressed in both SD and LD. The photoperiod gene interacted with daylength to control the levels of all three major physiological components of yield: the aerial biomass, harvest index, and days to maturity. Included among the other traits with levels altered by daylength-modulated photoperiod gene activity were: the number of branches, nodes, leaves and leaf area, the rate of yield accumulation, and sink activity.Department of Plant Breeding and Biometry paper no. 758  相似文献   

11.
12.
The complex nature of plant resistance to adverse environmental conditions, such as salinity and drought requires a better understanding of the stress-induced changes that may be involved in tolerance mechanisms. Here we investigate stress-related morpho-physiological effects during vegetative and reproductive growth in two Japonica rice cultivars (Bomba and Bahia) exposed to a range of NaCl concentrations from the seedling stage. The stress-related detrimental effects were observed either earlier or to a higher extent in cv. Bomba than in Bahia. Damages to the photosynthetic apparatus were related to loss of chlorophyll (Chl) and to a decrease of the maximum potential efficiency of PSII (F v /F m), affecting negatively net CO2 assimilation rate (P N). Stress-related leaf anatomical alterations were analysed during the vegetative and reproductive stages. The size of bulliform cells as well as dimensions related to the vascular system increased under mild stress but decreased in the longer term or under higher stress level. The pattern of the anatomical alterations observed at the reproductive stage under 20 mM NaCl was reflected in poor panicle development and yield loss, with effects more pronounced in cv. Bomba than in Bahia. In summary, our results show that some physiological and, particularly, leaf anatomical responses induced by NaCl stress are distinctive indicators of sensitivity to salt stress in rice cultivars.  相似文献   

13.
14.
Flowering is a major developmental phase change that transforms the fate of the shoot apical meristem (SAM) from a leaf-bearing vegetative meristem to that of a flower-producing inflorescence meristem. In Arabidopsis, floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)–FD complex and the flower meristem identity gene, LEAFY ( LFY ). Two redundant functioning homeobox genes, PENNYWISE ( PNY ) and POUND-FOOLISH ( PNF ), which are expressed in the vegetative and inflorescence SAM, regulate patterning events during reproductive development, including floral specification. To determine the role of PNY and PNF in the floral specification network, we characterized the genetic relationship of these homeobox genes with LFY and FT . Results from this study demonstrate that LFY functions downstream of PNY and PNF. Ectopic expression of LFY promotes flower formation in pny pnf plants, while the flower specification activity of ectopic FT is severely attenuated. Genetic analysis shows that when mutations in pny and pnf genes are combined with lfy , a synergistic phenotype is displayed that significantly reduces floral specification and alters inflorescence patterning events. In conclusion, results from this study support a model in which PNY and PNF promote LFY expression during reproductive development. At the same time, the flower formation activity of FT is dependent upon the function of PNY and PNF.  相似文献   

15.
Foliar application may be used to supply boron (B) to a crop when B demands are higher than can be supplied via the soil. While B foliar sprays have been used to correct B deficiency in sunflower (Helianthus annuus L.) in the field, no studies have determined the amount of B taken up by sunflower plant parts via foliar application. A study was conducted in which sunflower plants were grown at constant B concentration in nutrient solution with adequate B (46 micro m) or with limited B supply (0.24, 0.40 and 1.72 micro m) using Amberlite IRA-743 resin to control B supply. At the late vegetative stage of growth (25 and 35 d after transplanting), two foliar sprays were applied of soluble sodium tetraborate (20.8 % B) each at 0, 28, 65, 120 and 1200 mm (each spray equivalent to 0, 0.03, 0.07, 0.13 and 1.3 kg B ha-1 in 100 L water ha-1). The highest rate of B foliar fertilization resulted in leaf burn but had no other evident detrimental effect on plant growth. Under B-deficient conditions, B foliar application increased the vegetative and reproductive dry mass of plants. Foliar application of 28-1200 mm B increased the total dry mass of the most B-deficient plants by more than three-fold and that of plants grown initially with 1.72 micro m B in solution by 37-49 %. In this latter treatment, the dry mass of the capitulum was similar to that achieved under control conditions, but in no instance was total plant dry mass similar to that of the control. All B foliar spray rates increased the B concentration in various parts of the plant tops, including those that developed after the sprays were applied, but the B concentration in the roots was not increased by B foliar application. The B concentration in the capitulum of the plants sprayed at the highest rate was between 37 and 93 % of that in the control plants. This study showed that B foliar application was of benefit to B-deficient sunflower plants, increasing the B status of plant tops, including that of the capitulum which developed after the B sprays were applied.  相似文献   

16.
Drought is one of the critical factors limiting reproductive yields of rice and other crops globally. However, little is known about the molecular mechanism underlying reproductive development under drought stress in rice. To explore the potential gene function for improving rice reproductive development under drought, a drought induced gene, Oryza sativa Drought-Induced LTP (OsDIL) encoding a lipid transfer protein, was identified from our microarray data and selected for further study. OsDIL was primarily expressed in the anther and mainly responsive to abiotic stresses, including drought, cold, NaCl, and stress-related plant hormone abscisic acid (ABA). Compared with wild type, the OsDIL-overexpressing transgenic rice plants were more tolerant to drought stress during vegetative development and showed less severe tapetal defects and fewer defective anther sacs when treated with drought at the reproductive stage. The expression levels of the drought-responsive genes RD22, SODA1, bZIP46 and POD, as well as the ABA synthetic gene ZEP1 were up-regulated in the OsDIL-overexpression lines but the ABA degradation gene ABAOX3 was down-regulated. Moreover, overexpression of OsDIL lessened the down-regulation by drought of anther developmental genes (OsC4, CYP704B2 and OsCP1), providing a mechanism supporting pollen fertility under drought. Overexpression of OsDIL significantly enhanced drought resistance in transgenic rice during reproductive development, while showing no phenotypic changes or yield penalty under normal conditions. Therefore, OsDIL is an excellent candidate gene for genetic improvement of crop yield in adaption to unfavorable environments.  相似文献   

17.
In flowering plants, pollen tube growth is essential for delivery of male gametes into the female gametophyte or embryo sac for double fertilization. Although many genes have been identified as being involved in the process, the molecular mechanisms of pollen tube growth remains poorly understood. In this study, we identified that the Arabidopsis Transmembrane Protein 18 (AtTMEM18) gene played important roles in pollen tube growth. The AtTMEM18 shares a high similarity with the Transmembrane 18 proteins (TMEM18s) that are conserved in most eukaryotes and may play important roles in obesity in humans. Mutation in the AtTMEM18 by a Ds insertion caused abnormal callose deposition in the pollen grains and had a significant impact on pollen germination and pollen tube growth. AtTMEM18 is expressed in pollen grains, pollen tubes, root tips and other vegetative tissues. The pollen‐rescued assays showed that the mutation in AtTMEM18 also caused defects in roots, stems, leaves and transmitting tracts. AtTMEM18‐GFP was located around the nuclei. Genetic assays demonstrated that the localization of AtTMEM18 around the nuclei in the generative cells of pollen grains was essential for the male fertility. Furthermore, expression of the rice TMEM18‐homologous protein (OsTMEM18) driven by LAT52 promoter could recover the fertility of the Arabidopsis attmem18 mutant. These results suggested that the TMEM18 is important for plant growth in Arabidopsis.  相似文献   

18.
Vegetative phase change is the developmental transition from the juvenile phase to the adult phase in which a plant becomes competent for sexual reproduction. The gain of ability to flower is often accompanied by changes in patterns of differentiation in newly forming vegetative organs. In maize, juvenile leaves differ from adult leaves in morphology, anatomy and cell wall composition. Whereas the normal sequence of juvenile followed by adult is repeated with every sexual generation, this sequence can be altered in maize by the isolation and culture of the shoot apex from an adult phase plant: an 'adult' meristem so treated reverts to forming juvenile vegetative organs. To begin to unravel the as-yet poorly understood molecular mechanisms underlying phase change in maize, we compared gene expression in two juvenile sample types, leaf 4 and culture-derived leaves 3 or 4, with an adult sample type (leaf 9) using cDNA microarrays. All samples were leaf primordia at plastochron 6. A gene was scored as 'phase induced' if it was up- or downregulated in both juvenile sample types, compared with the adult sample type, with at least a twofold change in gene expression at a P-value of < or =0.005. Some 221 expressed sequence tags (ESTs) were upregulated in juveniles, and 28 ESTs were upregulated in adults. The largest class of juvenile-induced genes was comprised of those involved in photosynthesis, suggesting that maize plants are primed for energy production early in vegetative growth by the developmental induction of photosynthetic genes.  相似文献   

19.
A salient feature of shoot meristem growth is the maintenance of distinct anatomical and morphological features despite a continuous flux of cells. To investigate how meristem organization is self-perpetuated, we developed a protocol for the analysis of meristem growth in 3-D. Our protocol uses a non-destructive replica method to follow the pattern of cell expansion and cell divisions on the meristem surface over several days. Algorithms to reconstruct the meristem surface and compute its curvature and rate of extension were implemented. We applied this approach to the shoot apical meristem of Anagallis arvensis and showed that a subcellular resolution of extension rates can be achieved. This is the first detailed quantitative analysis of meristem geometry and surface expansion in 3-D. This new approach will be useful to connect cellular activities such as cell expansion, cell division, and differential gene expression with overall meristem morphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号