首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Formaldehyde is a reactive chemical that is commonly used in the production of industrial, laboratory, household, and cosmetic products. The causal association between formaldehyde exposure and increased incidence of cancer led the International Agency for Research on Cancer to classify formaldehyde as a carcinogen. Formaldehyde-induced DNA-protein crosslinks (DPCs) elicit responses involving nucleotide excision repair (NER) and homologous recombination (HR) repair pathways; however, little is known about the cellular and genetic changes that subsequently lead to formaldehyde-induced genotoxic and cytotoxic effects. Herein, investigations of genes that modulate the cytotoxic effects of formaldehyde exposure revealed that of five NER-deficient Chinese Hamster Ovary (CHO) cell lines tested, XPF- and ERCC1-deficient cells were most sensitive to formaldehyde treatment as compared to wild-type cells. Cell cycle analyses revealed that formaldehyde-treated XPF-deficient cells exhibited an immediate G2/M arrest that was associated with altered cell ploidy and apoptosis. Additionally, an elevated number of DNA double-strand breaks (DSBs), chromosomal breaks and radial formation were also observed in XPF-deficient cells following formaldehyde treatment. Formaldehyde-induced DSBs occurred in a replication-dependent, but an XPF-independent manner. However, delayed DSB repair was observed in the absence of XPF function. Collectively, our findings highlight the role of an XPF-dependent pathway in mitigating the sensitivity to formaldehyde-induced DNA damage as evidenced by the increased genomic instability and reduced cell viability in an XPF-deficient background. In addition, centrosome and microtubule abnormalities, as well as enlarged nuclei, caused by formaldehyde exposure are demonstrated in a repair-proficient cell line.  相似文献   

2.
R Gantt 《Mutation research》1987,183(1):75-87
Bulky adducts to DNA including DNA-protein crosslinks formed with trans-platinum(II)diammine-dichloride are repaired largely by the nucleotide excision pathway in mammalian cells. The discovery in this laboratory that cells deficient in nucleotide excision repair, i.e., SV40-virus transformed SV-XP20S cells, can efficiently repair DNA-protein crosslinks implicates a second pathway. In this report, details concerning this pathway are presented. DNA-protein crosslinks induced with 20 microM trans-platinum were assayed by the membrane alkaline elution procedure of Kohn. DNA replication was measured by CsCl gradient separation of newly synthesized DNA that had incorporated 5-bromodeoxyuridine. The following results indicate that this new repair pathway is associated with cell cycling: Whereas rapidly proliferating human cells deficient in excision repair (SV40 transformed XP20S, group A) are proficient in repair of DNA-protein crosslinks, the more slowly growing untransformed parent line is deficient but can complete repair after prolonged periods of 4-6 days, the approximate doubling time of the cell population. Either "used" culture medium or cycloheximide (1 microgram/ml) inhibits cell proliferation, protein synthesis, DNA replication and crosslink repair. In the presence of increasing concentrations of cycloheximide (0.01-5 micrograms/ml) the percent of DNA replication decreases and is essentially equivalent to the percent of crosslink repair. The following results indicate that this new repair pathway, though associated with cell cycling, is independent of DNA replication per se. The rates of DNA-protein crosslink repair and DNA replication are essentially the same in mouse L1210 cells rapidly proliferating in 20% serum supplement; however, to slower proliferation rates in 1% serum rate of crosslink repair is slower but differs from that of DNA replication. In the presence of aphidicolin (10 micrograms/ml) cells can repair DNA-protein crosslinks in virtually the complete absence of DNA replication, though the rate is slower in both nucleotide excision-proficient and -deficient cells. Thus, DNA replication is not essential for repair of DNA-protein crosslinks. Comparison of the kinetics of replication and DNA-protein crosslink repair of pulse-labeled indicates that, in the absence of metabolic inhibitors, repair of the crosslinks is independent of replication per se and, therefore, DNA recombination events are not involved in this repair process. We conclude, therefore, that the new repair pathway is not coupled with DNA replication but is with cell cycling.  相似文献   

3.
In order to help further define DNA post-replication repair (PRR), a conditional synthetic lethal screen was employed to identify new genes involved in the PRR pathway. A synthetic lethal screen with the mms2 mutation resulted in the recovery of two suppressor mutations responsible for regulating PRR. The recovered suppressors are the mating type genes and SIR3. Indeed, controlled expression of both mating type genes or deletion of SIR3 rescued the conditional synthetic lethal mutant phenotypes. Furthermore, comprehensive analyses suggest that mating type heterozygosity confers tolerance to a broad range of DNA damage, and that this effect is limited to all PRR pathway mutations, but does not apply to base excision repair, nucleotide excision repair or recombination repair mutants. In addition, the tolerance conferred to PRR mutants as a result of mating type heterozygosity is dependent on a functional homologous recombination but not the non-homologous end-joining pathway. Thus, mating type status appears to be responsible for signalling DNA content and possibly cell cycle stage, allowing the cell to select the most efficient means to repair the DNA damage.  相似文献   

4.
Acetaldehyde, a primary metabolite of alcohol, forms DNA adducts and disrupts the DNA replication process, causing genomic instability, a hallmark of cancer. Indeed, chronic alcohol consumption accounts for approximately 3.6% of all cancers worldwide. However, how the adducts are prevented and repaired after acetaldehyde exposure is not well understood. In this report, we used the fission yeast Schizosaccharomyces pombe as a model organism to comprehensively understand the genetic controls of DNA damage avoidance in response to acetaldehyde. We demonstrate that Atd1 functions as a major acetaldehyde detoxification enzyme that prevents accumulation of Rad52-DNA repair foci, while Atd2 and Atd3 have minor roles in acetaldehyde detoxification. We found that acetaldehyde causes DNA damage at the replication fork and activates the cell cycle checkpoint to coordinate cell cycle arrest with DNA repair. Our investigation suggests that acetaldehyde-mediated DNA adducts include interstrand-crosslinks and DNA-protein crosslinks. We also demonstrate that acetaldehyde activates multiple DNA repair pathways. Nucleotide excision repair and homologous recombination, which are both epistatically linked to the Fanconi anemia pathway, have major roles in acetaldehyde tolerance, while base excision repair and translesion synthesis also contribute to the prevention of acetaldehyde-dependent genomic instability. We also show the involvement of Wss1-related metalloproteases, Wss1 and Wss2, in acetaldehyde tolerance. These results indicate that acetaldehyde causes cellular stresses that require cells to coordinate multiple cellular processes in order to prevent genomic instability. Considering that acetaldehyde is a human carcinogen, our genetic studies serve as a guiding investigation into the mechanisms of acetaldehyde-dependent genomic instability and carcinogenesis.  相似文献   

5.
6.
Psoralen photoreaction produces covalent monoadducts and interstrand crosslinks in DNA. The interstrand DNA crosslinks are complex double strand lesions that require the involvement of multiple pathways for repair. Homologous recombination, which can carry out error-free repair, is a major pathway for crosslink repair; however, some recombination pathways can also produce DNA rearrangements. Psoralen photoreaction-induced recombination in yeast was measured using direct repeat substrates that can detect gene conversions, a form of conservative recombination, as well as deletions and triplications, which generate gene copy number changes. In repair-proficient cells the major products of recombination were gene conversions, along with substantial fractions of deletions. Deficiencies in DNA repair pathways increased non-conservative recombination products. Homologous recombination-deficient rad51, rad54, and rad57 strains had low levels of crosslink-induced recombination, and most products were deletions produced by single strand annealing. Nucleotide excision repair-deficient rad1 and rad2 yeast had increased levels of triplications, and rad1 cells had lower crosslink-induced recombination. Deficiencies in post-replication repair increased crosslink-induced recombination and gene copy number changes. Loss of REV3 function, in the error-prone branch, and of RAD5 and UBC13, in the error-free branch, produced moderate increases in deletions and triplications; rad18 cells, deficient in both post-replication repair sub-pathways, exhibited hyperrecombination, with primarily non-conservative products. Proper functioning of all the DNA repair pathways tested was required to maintain genomic stability and avoid gene copy number variation in response to interstrand crosslinks.  相似文献   

7.
8.
DNA repair is a key determinant in the cellular response to therapy and tumor repair status could play an important role in tailoring patient therapy. Our goal was to evaluate the mRNA of 13 genes involved in different DNA repair pathways (base excision, nucleotide excision, homologous recombination, and Fanconi anemia) in paraffin embedded samples of triple negative breast cancer (TNBC) compared to luminal A breast cancer (LABC). Most of the genes involved in nucleotide excision repair and Fanconi Anemia pathways, and CHK1 gene were significantly less expressed in TNBC than in LABC. PARP1 levels were higher in TNBC than in LABC. In univariate analysis high level of FANCA correlated with an increased overall survival and event free survival in TNBC; however multivariate analyses using Cox regression did not confirm FANCA as independent prognostic factor. These data support the evidence that TNBCs compared to LABCs harbour DNA repair defects.  相似文献   

9.
Organisms like Dictyostelium discoideum, often referred to as DNA damage “extremophiles”, can survive exposure to extremely high doses of radiation and DNA crosslinking agents. These agents form highly toxic DNA crosslinks that cause extensive DNA damage. However, little is known about how Dictyostelium and the other “extremophiles” can tolerate and repair such large numbers of DNA crosslinks. Here we describe a comprehensive genetic analysis of crosslink repair in Dictyostelium discoideum. We analyse three gene groups that are crucial for a replication-coupled repair process that removes DNA crosslinks in higher eukarya: The Fanconi anaemia pathway (FA), translesion synthesis (TLS), and nucleotide excision repair. Gene disruption studies unexpectedly reveal that the FA genes and the TLS enzyme Rev3 play minor roles in tolerance to crosslinks in Dictyostelium. However, disruption of the Xpf nuclease subcomponent results in striking hypersensitivity to crosslinks. Genetic interaction studies reveal that although Xpf functions with FA and TLS gene products, most Xpf mediated repair is independent of these two gene groups. These results suggest that Dictyostelium utilises a distinct Xpf nuclease-mediated repair process to remove crosslinked DNA. Other DNA damage–resistant organisms and chemoresistant cancer cells might adopt a similar strategy to develop resistance to DNA crosslinking agents.  相似文献   

10.
11.
12.
Youds JL  O'Neil NJ  Rose AM 《Genetics》2006,173(2):697-708
In C. elegans, DOG-1 prevents deletions that initiate in polyG/polyC tracts (G/C tracts), most likely by unwinding secondary structures that can form in G/C tracts during lagging-strand DNA synthesis. We have used the dog-1 mutant to assay the in vivo contribution of various repair genes to the maintenance of G/C tracts. Here we show that DOG-1 and the BLM ortholog, HIM-6, act synergistically during replication; simultaneous loss of function of both genes results in replicative stress and an increase in the formation of small deletions that initiate in G/C tracts. Similarly, we demonstrate that the C. elegans orthologs of the homologous recombination repair genes BARD1, RAD51, and XPF and the trans-lesion synthesis polymerases poleta and polkappa contribute to the prevention of deletions in dog-1 mutants. Finally, we provide evidence that the small deletions generated in the dog-1 background are not formed through homologous recombination, nucleotide excision repair, or nonhomologous end-joining mechanisms, but appear to result from a mutagenic repair mechanism acting at G/C tracts. Our data support the hypothesis that absence of DOG-1 leads to replication fork stalling that can be repaired by deletion-free or deletion-prone mechanisms.  相似文献   

13.
The many proteins that function in the Fanconi anaemia (FA) monoubiquitylation pathway initiate replicative DNA crosslink repair. However, it is not clear whether individual FA genes participate in DNA repair pathways other than homologous recombination and translesion bypass. Here we show that avian DT40 cell knockouts of two integral FA genes--UBE2T and FANCM are unexpectedly sensitive to UV-induced DNA damage. Comprehensive genetic dissection experiments indicate that both of these FA genes collaborate to promote nucleotide excision repair rather than translesion bypass to protect cells form UV genotoxicity. Furthermore, UBE2T deficiency impacts on the efficient removal of the UV-induced photolesion cyclobutane pyrimidine dimer. Therefore, this work reveals that the FA pathway shares two components with nucleotide excision repair, intimating not only crosstalk between the two major repair pathways, but also potentially identifying a UBE2T-mediated ubiquitin-signalling response pathway that contributes to nucleotide excision repair.  相似文献   

14.
Schizosaccharomyces pombe Rad16 is the ortholog of the XPF structure-specific endonuclease, which is required for nucleotide excision repair and implicated in the single strand annealing mechanism of recombination. We show that Rad16 is important for proper completion of meiosis. In its absence, cells suffer reduced spore viability and abnormal chromosome segregation with evidence for fragmentation. Recombination between homologous chromosomes is increased, while recombination within sister chromatids is reduced, suggesting that Rad16 is not required for typical homolog crossovers but influences the balance of recombination between the homolog and the sister. In vegetative cells, rad16 mutants show evidence for genome instability. Similar phenotypes are associated with mutants affecting Rhp14XPA but are independent of other nucleotide excision repair proteins such as Rad13XPG. Thus, the XPF/XPA module of the nucleotide excision repair pathway is incorporated into multiple aspects of genome maintenance even in the absence of external DNA damage.  相似文献   

15.
Fanconi Anemia (FA) is a rare, inherited genomic instability disorder, caused by mutations in genes involved in the repair of interstrand DNA crosslinks (ICLs). The FA signaling network contains a unique nuclear protein complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. FA proteins act at different steps of ICL repair in sensing, recognition and processing of DNA lesions. The multi-protein network is tightly regulated by complex mechanisms, such as ubiquitination, phosphorylation, and degradation signals that are critical for the maintenance of genome integrity and suppressing tumorigenesis. Here, we discuss recent advances in our understanding of how the FA proteins participate in ICL repair and regulation of the FA signaling network that assures the safeguard of the genome. We further discuss the potential application of designing small molecule inhibitors that inhibit the FA pathway and are synthetic lethal with DNA repair enzymes that can be used for cancer therapeutics.  相似文献   

16.
Zietlow L  Bessho T 《Biochemistry》2008,47(19):5460-5464
DNA interstrand cross-links (ICLs) are mainly repaired by the combined action of nucleotide excision repair and homologous recombination in E. coli. Genetic data also suggest the existence of a nucleotide excision repair-dependent, homologous recombination-independent ICL repair pathway. The involvement of translesion synthesis in this pathway has been postulated; however, the molecular mechanism of this pathway is not understood. To examine the role of translesion synthesis in ICL repair, we generated a defined substrate with a single psoralen ICL that mimics a postincision structure generated by nucleotide excision repair. We demonstrated that the Klenow fragment (DNA polymerase I) performs translesion synthesis on this model substrate. This in vitro translesion synthesis assay will help in understanding the basic mechanism of a postincision translesion synthesis process in ICL repair.  相似文献   

17.
To study the role of nucleotide excision repair in the induction of intrachromosomal homologous recombination in mammalian cells, we introduced a plasmid containing a substrate for recombination into three human cell lines that differ in their repair capacity and compared the frequency of recombination induced by UV radiation and by 1-nitrosopyrene. One strain had a normal capacity for nucleotide excision repair, the second exhibited an intermediate rate of repair, and the third, derived from a patient with xeroderma pigmentosum, had no ability to repair UV- or 1-nitrosopyrene-induced DNA damage. The endogenous thymidine kinase genes in these cell strains had been inactivated, and the cells contained an integrated copy of a plasmid carrying duplicated copies of the herpes simplex virus type 1 thymidine kinase (Htk) gene, each inactivated by an 8-base-pair XhoI site inserted at a unique site. A functional tk gene can only be generated by a productive recombination event between the two Htk genes. In all three stains, UV and 1-nitrosopyrene induced dose-dependent increases in the frequency of recombinants. However, the doses required to cause a specific increase in recombination in the repair-deficient strains were 10 to 30 times lower than the dose required for the cell strain with a normal capacity for repair. These results strongly suggest that unexcised DNA lesions, rather than excision repair per se, stimulate intrachromosomal homologous recombination. Southern blot analysis of DNA from representative recombinants indicated that in all cases one of the two Htk genes had become wild type (XhoI resistant). The majority (90%) retained the Htk duplication, consistent with nonreciprocal transfer of genetic information (gene conversion).  相似文献   

18.
19.
Cells preconditioned with low doses of low-linear energy transfer (LET) ionizing radiation become more resistant to later challenges of radiation. The mechanism(s) by which cells adaptively respond to radiation remains unclear, although it has been suggested that DNA repair induced by low doses of radiation increases cellular radioresistance. Recent gene expression profiles have consistently indicated that proteins involved in the nucleotide excision repair pathway are up-regulated after exposure to ionizing radiation. Here we test the role of the nucleotide excision repair pathway for adaptive response to gamma radiation in vitro. Wild-type CHO cells exhibited both greater survival and fewer HPRT mutations when preconditioned with a low dose of gamma rays before exposure to a later challenging dose. Cells mutated for ERCC1, ERCC3, ERCC4 or ERCC5 did not express either adaptive response to radiation; cells mutated for ERCC2 expressed a survival adaptive response but no mutation adaptive response. These results suggest that some components of the nucleotide excision repair pathway are required for phenotypic low-dose induction of resistance to gamma radiation in mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号