首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Deficiency of NEIL3, a DNA repair enzyme, has significant impact on mouse physiology, including vascular biology and gut health, processes related to aging. Leukocyte telomere length (LTL) is suggested as a marker of biological aging, and shortened LTL is associated with increased risk of cardiovascular disease. NEIL3 has been shown to repair DNA damage in telomere regions in vitro. Herein, we explored the role of NEIL3 in telomere maintenance in vivo by studying bone marrow cells from atherosclerosis-prone NEIL3-deficient mice. We found shortened telomeres and decreased activity of the telomerase enzyme in bone marrow cells derived from Apoe?/?Neil3?/? as compared to Apoe?/? mice. Furthermore, Apoe?/?Neil3?/? mice had decreased leukocyte levels as compared to Apoe?/? mice, both in bone marrow and in peripheral blood. Finally, RNA sequencing of bone marrow cells from Apoe?/?Neil3?/? and Apoe?/? mice revealed different expression levels of genes involved in cell cycle regulation, cellular senescence and telomere protection. This study points to NEIL3 as a telomere-protecting protein in murine bone marrow in vivo.  相似文献   

2.
We have generated a strain of mice lacking two DNA N-glycosylases of base excision repair (BER), NTH1 and NEIL1, homologs of bacterial Nth (endonuclease three) and Nei (endonuclease eight). Although these enzymes remove several oxidized bases from DNA, they do not remove the well-known carcinogenic oxidation product of guanine: 7,8-dihydro-8-oxoguanine (8-OH-Gua), which is removed by another DNA N-glycosylase, OGG1. The Nth1?/?Neil1?/? mice developed pulmonary and hepatocellular tumors in much higher incidence than either of the single knockouts, Nth1?/? and Neil1?/?. The pulmonary tumors contained, exclusively, activating GGT  GAT transitions in codon 12 of K-ras of their DNA. Such transitions contrast sharply with the activating GGT  GTT transversions in codon 12 of K-ras of the pathologically similar pulmonary tumors, which arose in mice lacking OGG1 and a second DNA N-glycosylase, MUTY. To characterize the biochemical phenotype of the knockout mice, the content of oxidative DNA base damage was analyzed from three tissues isolated from control, single and double knockout mice. The content of 8-OH-Gua was indistinguishable among all genotypes. In contrast, the content of 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) derived from adenine and guanine, respectively, were increased in some but not all tissues of Neil1?/? and Neil1?/?Nth1?/? mice. The high incidence of tumors in our Nth1?/?Neil1?/? mice together with the nature of the activating mutation in the K-ras gene of their pulmonary tumors, reveal for the first time, the existence of mutagenic and carcinogenic oxidative damage to DNA which is not 8-OH-Gua.  相似文献   

3.
4.
5.
During somatic hypermutation (SHM) of antibody variable (V) region genes, activation-induced cytidine deaminase (AID) converts dC to dU, and dUs can either be excised by uracil DNA glycosylase (UNG), by mismatch repair, or replicated over. If UNG excises the dU, the abasic site could be cleaved by AP-endonuclease (APE), introducing the single-strand DNA breaks (SSBs) required for generating mutations at A:T bp, which are known to depend upon mismatch repair and DNA Pol η. DNA Pol β or λ could instead repair the lesion correctly. To assess the involvement of Pols β and λ in SHM of antibody genes, we analyzed mutations in the VDJh4 3′ flanking region in Peyer's patch germinal center (GC) B cells from polβ?/?polλ?/?, polλ?/?, and polβ?/? mice. We find that deficiency of either or both polymerases results in a modest but significant decrease in V region SHM, with Pol β having a greater effect, but there is no effect on mutation specificity, suggesting they have no direct role in SHM. Instead, the effect on SHM appears to be due to a role for these enzymes in GC B cell proliferation or viability. The results suggest that the BER pathway is not important during V region SHM for generating mutations at A:T bp. Furthermore, this implies that most of the SSBs required for Pol η to enter and create A:T mutations are likely generated during replication instead. These results contrast with the inhibitory effect of Pol β on mutations at the Ig Sμ locus, Sμ DSBs and class switch recombination (CSR) reported previously. We show here that B cells deficient in Pol λ or both Pol β and λ proliferate normally in culture and undergo slightly elevated CSR, as shown previously for Pol β-deficient B cells.  相似文献   

6.
B cell maturation and B cell-mediated antibody response require programmed DNA modifications such as the V(D)J recombination, the immunoglobulin (Ig) class switch recombination, and the somatic hypermutation to generate functional Igs. Many protein factors involved in DNA damage repair have been shown to be critical for the maturation and activation of B cells. Rad9 plays an important role in both DNA repair and cell cycle checkpoint control. However, its role in Ig generation has not been reported. In this study, we generated a conditional knock-out mouse line in which Rad9 is deleted specifically in B cells and investigated the function of Rad9 in B cells. The Rad9−/− B cells isolated from the conditional knock-out mice displayed impaired growth response and enhanced DNA lesions. Impaired Ig production in response to immunization in Rad9−/− mice was also detected. In addition, the Ig class switch recombination is deficient in Rad9−/− B cells. Taken together, Rad9 plays dual roles in generating functional antibodies and in maintaining the integrity of the whole genome in B cells.  相似文献   

7.
A variety of agents cause DNA base alkylation damage, including the known hepatocarcinogen aflatoxin B1 (AFB1) and chemotherapeutic drugs derived from nitrogen mustard (NM). The N7 site of guanine is the primary site of alkylation, with some N7-deoxyguanosine adducts undergoing imidazole ring-opening to stable mutagenic N5-alkyl formamidopyrimidine (Fapy-dG) adducts. These adducts exist as a mixture of canonical β- and unnatural α-anomeric forms. The β species are predominant in double-stranded (ds) DNA. Recently, we have demonstrated that the DNA glycosylase NEIL1 can initiate repair of AFB1-Fapy-dG adducts both in vitro and in vivo, with Neil1−/− mice showing an increased susceptibility to AFB1-induced hepatocellular carcinoma.Here, we hypothesized that NEIL1 could excise NM-Fapy-dG and that NEIL3, a closely related DNA glycosylase, could excise both NM-Fapy-dG and AFB1-Fapy-dG. Product formation from the reaction of human NEIL1 with ds oligodeoxynucleotides containing a unique NM-Fapy-dG followed a bi-component exponential function under single turnover conditions. Thus, two adduct conformations were differentially recognized by hNEIL1. The excision rate of the major form (∼13.0 min−1), presumed to be the β-anomer, was significantly higher than that previously reported for 5-hydroxycytosine, 5-hydroxyuracil, thymine glycol (Tg), and AFB1-Fapy-dG. Product generation from the minor form was much slower (∼0.4 min−1), likely reflecting the rate of conversion of the α anomer into the β anomer. Mus musculus NEIL3 (MmuNEIL3Δ324) excised NM-Fapy-dG from single-stranded (ss) DNA (turnover rate of ∼0.4 min−1), but not from ds DNA. Product formation from ss substrate was incomplete, presumably because of a substantial presence of the α anomer. MmuNEIL3Δ324 could not initiate repair of AFB1-Fapy-dG in either ds or ss DNA. Overall, the data suggest that both NEIL1 and NEIL3 may protect cells against cytotoxic and mutagenic effects of NM-Fapy-dG, but NEIL1 may have a unique role in initiation of base excision repair of AFB1-Fapy-dG.  相似文献   

8.
XPC is one of the key DNA damage recognition proteins in the global genome repair route of the nucleotide excision repair (NER) pathway. Previously, we demonstrated that NER-deficient mouse models Xpa?/? and Xpc?/? exhibit a divergent spontaneous tumor spectrum and proposed that XPC might be functionally involved in the defense against oxidative DNA damage. Others have mechanistically dissected several functionalities of XPC to oxidative DNA damage sensitivity using in vitro studies. XPC has been linked to regulation of base excision repair (BER) activity, redox homeostasis and recruitment of ATM and ATR to damage sites, thereby possibly regulating cell cycle checkpoints and apoptosis. XPC has additionally been implicated in recognition of bulky (e.g. cyclopurines) and non-bulky DNA damage (8-oxodG). However, the ultimate contribution of the XPC functionality in vivo in the oxidative DNA damage response and subsequent mutagenesis process remains unclear. Our study indicates that Xpc?/? mice, in contrary to Xpa?/? and wild type mice, have an increased mutational load upon induction of oxidative stress and that mutations arise in a slowly accumulative fashion. The effect of non-functional XPC in vivo upon oxidative stress exposure appears to have implications in mutagenesis, which can contribute to the carcinogenesis process. The levels and rate of mutagenesis upon oxidative stress correlate with previous findings that lung tumors in Xpc?/? mice overall arise late in the lifespan and that the incidence of internal tumors in XP-C patients is relatively low in comparison to skin cancer incidence.  相似文献   

9.
Repair of oxidized base lesions in the human genome, initiated by DNA glycosylases, occurs via the base excision repair pathway using conserved repair and some non-repair proteins. However, the functions of the latter noncanonical proteins in base excision repair are unclear. Here we elucidated the role of heterogeneous nuclear ribonucleoprotein-U (hnRNP-U), identified in the immunoprecipitate of human NEIL1, a major DNA glycosylase responsible for oxidized base repair. hnRNP-U directly interacts with NEIL1 in vitro via the NEIL1 common interacting C-terminal domain, which is dispensable for its enzymatic activity. Their in-cell association increases after oxidative stress. hnRNP-U stimulates the NEIL1 in vitro base excision activity for 5-hydroxyuracil in duplex, bubble, forked, or single-stranded DNA substrate, primarily by enhancing product release. Using eluates from FLAG-NEIL1 immunoprecipitates from human cells, we observed 3-fold enhancement in complete repair activity after oxidant treatment. The lack of such enhancement in hnRNP-U-depleted cells suggests its involvement in repairing enhanced base damage after oxidative stress. The NEIL1 disordered C-terminal region binds to hnRNP-U at equimolar ratio with high affinity (Kd = ∼54 nm). The interacting regions in hnRNP-U, mapped to both termini, suggest their proximity in the native protein; these are also disordered, based on PONDR (Predictor of Naturally Disordered Regions) prediction and circular dichroism spectra. Finally, depletion of hnRNP-U and NEIL1 epistatically sensitized human cells at low oxidative genome damage, suggesting that the hnRNP-U protection of cells after oxidative stress is largely due to enhancement of NEIL1-mediated repair.  相似文献   

10.
The cannabinoid receptor 2 (CB2) has been reported to modulate B cell functions including migration, proliferation and isotype class switching. Since these processes are required for the generation of the germinal center (GC) and antigen-specific plasma and memory cells following immunization with a T-dependent antigen, CB2 has the capacity to alter the quality and magnitude of T-dependent immune responses. To address this question, we immunized WT and CB2−/− mice with the T-dependent antigen 4-hydroxy-3-nitrophenylacetyl (NP)-chicken-gamma-globulin (CGG) and measured GC B cell formation and the generation of antigen-specific B cells and serum immunoglobulin (Ig). While there was a significant reduction in the number of splenic GC B cells in CB2−/− mice early in the response there was no detectable difference in the number of NP-specific IgM and IgG1 plasma cells. There was also no difference in NP-specific IgM and class switched IgG1 in the serum. In addition, we found no defect in the homing of plasma cells to the bone marrow (BM) and affinity maturation, although memory B cell cells in the spleen were reduced in CB2−/− mice. CB2-deficient mice also generated similar levels of antigen-specific IgM and IgG in the serum as WT following immunization with sheep red blood cells (sRBC). This study demonstrates that although CB2 plays a role in promoting GC and memory B cell formation/maintenance in the spleen, it is dispensable on all immune cell types required for the generation of antigen-specific IgM and IgG in T-dependent immune responses.  相似文献   

11.
The telomeric DNA of vertebrates consists of d(TTAGGG)n tandem repeats, which can form quadruplex DNA structures in vitro and likely in vivo. Despite the fact that the G-rich telomeric DNA is susceptible to oxidation, few biochemical studies of base excision repair in telomeric DNA and quadruplex structures have been done. Here, we show that telomeric DNA containing thymine glycol (Tg), 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh), or spiroiminodihydantoin (Sp) can form quadruplex DNA structures in vitro. We have tested the base excision activities of five mammalian DNA glycosylases (NEIL1, NEIL2, mNeil3, NTH1, and OGG1) on these lesion-containing quadruplex substrates and found that only mNeil3 had excision activity on Tg in quadruplex DNA and that the glycosylase exhibited a strong preference for Tg in the telomeric sequence context. Although Sp and Gh in quadruplex DNA were good substrates for mNeil3 and NEIL1, none of the glycosylases had activity on quadruplex DNA containing 8-oxoG. In addition, NEIL1 but not mNeil3 showed enhanced glycosylase activity on Gh in the telomeric sequence context. These data suggest that one role for Neil3 and NEIL1 is to repair DNA base damages in telomeres in vivo and that Neil3 and Neil1 may function in quadruplex-mediated cellular events, such as gene regulation via removal of damaged bases from quadruplex DNA.  相似文献   

12.
DNA damage mediated by reactive oxygen species generates miscoding and blocking lesions that may lead to mutations or cell death. Base excision repair (BER) constitutes a universal mechanism for removing oxidatively damaged bases and restoring the integrity of genomic DNA. In Escherichia coli, the DNA glycosylases Nei, Fpg, and Nth initiate BER of oxidative lesions; OGG1 and NTH1 proteins fulfill a similar function in mammalian cells. Three human genes, designated NEIL1, NEIL2 and NEIL3, encode proteins that contain sequence homologies to Nei and Fpg. We have cloned the corresponding mouse genes and have overexpressed and purified mNeil1, a DNA glycosylase that efficiently removes a wide spectrum of mutagenic and cytotoxic DNA lesions. These lesions include the two cis-thymineglycol(Tg) stereoisomers, guanine- and adenine-derived formamidopyrimidines, and 5,6-dihydrouracil. Two of these lesions, fapyA and 5S,6R thymine glycol, are not excised by mOgg1 or mNth1. We have also used RNA interference technology to establish embryonic stem cell lines deficient in Neil1 protein and showed them to be sensitive to low levels of gamma-irradiation. The results of these studies suggest that Neil1 is an essential component of base excision repair in mammalian cells; its presence may contribute to the redundant repair capacity observed in Ogg1 -/- and Nth1 -/- mice.  相似文献   

13.
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is triggered by the activity of activation-induced cytidine deaminase (AID). AID induces DNA lesions in variable regions of Ig genes, and error-prone DNA repair mechanisms initiated in response to these lesions introduce the mutations that characterize SHM. Error-prone DNA repair in SHM is proposed to be mediated by low-fidelity DNA polymerases such as those that mediate trans-lesion synthesis (TLS); however, the mechanism by which these enzymes are recruited to AID-induced lesions remains unclear. Proliferating cell nuclear antigen (PCNA), the sliding clamp for multiple DNA polymerases, undergoes Rad6/Rad18-dependent ubiquitination in response to DNA damage. Ubiquitinated PCNA promotes the replacement of the replicative DNA polymerase stalled at the site of a DNA lesion with a TLS polymerase. To examine the potential role of Rad18-dependent PCNA ubiquitination in SHM, we analyzed Ig gene mutations in Rad18 knockout (KO) mice immunized with T cell-dependent antigens. We found that SHM in Rad18 KO mice was similar to wild-type mice, suggesting that Rad18 is dispensable for SHM. However, residual levels of ubiquitinated PCNA were observed in Rad18 KO cells, indicating that Rad18-independent PCNA ubiquitination might play a role in SHM.  相似文献   

14.
The chicken DT40 B lymphocyte line diversifies its immunoglobulin (Ig) V genes through translesion DNA synthesis–dependent point mutations (Ig hypermutation) and homologous recombination (HR)–dependent Ig gene conversion. The error-prone biochemical characteristic of the A family DNA polymerases Polν and Polθ led us to explore the role of these polymerases in Ig gene diversification in DT40 cells. Disruption of both polymerases causes a significant decrease in Ig gene conversion events, although POLN−/−/POLQ−/− cells exhibit no prominent defect in HR-mediated DNA repair, as indicated by no increase in sensitivity to camptothecin. Polη has also been previously implicated in Ig gene conversion. We show that a POLH−/−/POLN−/−/POLQ−/− triple mutant displays no Ig gene conversion and reduced Ig hypermutation. Together, these data define a role for Polν and Polθ in recombination and suggest that the DNA synthesis associated with Ig gene conversion is accounted for by three specialized DNA polymerases.  相似文献   

15.
PrimPol is a DNA damage tolerance enzyme possessing both translesion synthesis (TLS) and primase activities. To uncover its potential role in TLS-mediated IgVλ hypermutation and define its interplay with other TLS polymerases, PrimPol?/? and PrimPol?/?/Polη?/?/Polζ ?/? gene knockouts were generated in avian cells. Loss of PrimPol had no significant impact on the rate of hypermutation or the mutation spectrum of IgVλ. However, PrimPol?/? cells were sensitive to methylmethane sulfonate, suggesting that it may bypass abasic sites at the IgVλ segment by repriming DNA synthesis downstream of these sites. PrimPol?/? cells were also sensitive to cisplatin and hydroxyurea, indicating that it assists in maintaining / restarting replication at a variety of lesions. To accurately measure the relative contribution of the TLS and primase activities, we examined DNA damage sensitivity in PrimPol?/? cells complemented with polymerase or primase-deficient PrimPol. Polymerase-defective, but not primase-deficient, PrimPol suppresses the hypersensitivity of PrimPol?/? cells. This indicates that its primase, rather than TLS activity, is pivotal for DNA damage tolerance. Loss of TLS polymerases, Polη and Polζ has an additive effect on the sensitivity of PrimPol?/? cells. Moreover, we found that PrimPol and Polη-Polζ redundantly prevented cell death and facilitated unperturbed cell cycle progression. PrimPol?/? cells also exhibited increased sensitivity to a wide variety of chain-terminating nucleoside analogs (CTNAs). PrimPol could perform close-coupled repriming downstream of CTNAs and oxidative damage in vitro. Together, these results indicate that PrimPol's repriming activity plays a central role in reinitiating replication downstream from CTNAs and other specific DNA lesions.  相似文献   

16.
Ataxia oculomotor apraxia-1 (AOA1) is an autosomal recessive neurodegenerative disease that results from mutations of aprataxin (APTX). APTX associates with the DNA single- and double-strand break repair machinery and is able to remove AMP from 5′-termini at DNA strand breaks in vitro. However, attempts to establish a DNA strand break repair defect in APTX-defective cells have proved conflicting and unclear. We reasoned that this may reflect that DNA strand breaks with 5′-AMP represent only a minor subset of breaks induced in cells, and/or the availability of alternative mechanisms for removing AMP from 5′-termini. Here, we have attempted to increase the dependency of chromosomal single- and double-strand break repair on aprataxin activity by slowing the rate of repair of 3′-termini in aprataxin-defective neural cells, thereby increasing the likelihood that the 5′-termini at such breaks become adenylated and/or block alternative repair mechanisms. To do this, we generated a mouse model in which APTX is deleted together with tyrosyl DNA phosphodiesterase (TDP1), an enzyme that repairs 3′-termini at a subset of single-strand breaks (SSBs), including those with 3′-topoisomerase-1 (Top1) peptide. Notably, the global rate of repair of oxidative and alkylation-induced SSBs was significantly slower in Tdp1?/?/Aptx?/? double knockout quiescent mouse astrocytes compared with Tdp1?/? or Aptx?/? single knockouts. In contrast, camptothecin-induced Top1-SSBs accumulated to similar levels in Tdp1?/? and Tdp1?/?/Aptx?/? double knockout astrocytes. Finally, we failed to identify a measurable defect in double-strand break repair in Tdp1?/?, Aptx?/? or Tdp1?/?/Aptx?/? astrocytes. These data provide direct evidence for a requirement for aprataxin during chromosomal single-strand break repair in primary neural cells lacking Tdp1.  相似文献   

17.
Modulation of chromatin structure plays an important role in the recruitment and function of DNA repair proteins. CXXC finger protein 1 (Cfp1), encoded by the CXXC1 gene, is essential for mammalian development and is an important regulator of chromatin structure. Murine embryonic stem (ES) cells lacking Cfp1 (CXXC1?/?) are viable but demonstrate a dramatic decrease in cytosine methylation, altered histone methylation, and an inability to differentiate. We find that ES cells lacking Cfp1 are hypersensitive to a variety of DNA-damaging agents. In addition, CXXC1?/? ES cells accumulate more DNA damage and exhibit decreased protein expression and endonuclease activity of AP endonuclease (Ape1/Ref-1), an enzyme involved in DNA base excision repair. Expression in CXXC1?/? ES cells of either the amino half of Cfp1 (amino acids 1–367) or the carboxyl half of Cfp1 (amino acids 361–656) restores normal Ape1/Ref-1 protein expression and rescues the hypersensitivity to DNA-damaging agents, demonstrating that Cfp1 contains redundant functional domains. Furthermore, retention of either the DNA-binding activity of Cfp1 or interaction with the Setd1A and Setd1B histone H3-Lys4 methyltransferase complexes is required to restore normal sensitivity of CXXC1?/? ES cells to DNA-damaging agents. These results implicate Cfp1 as a regulator of DNA repair processes.  相似文献   

18.
Dyshomeostasis of transition metals iron and copper as well as accumulation of oxidative DNA damage have been implicated in multitude of human neurodegenerative diseases, including Alzheimer disease and Parkinson disease. These metals oxidize DNA bases by generating reactive oxygen species. Most oxidized bases in mammalian genomes are repaired via the base excision repair pathway, initiated with one of four major DNA glycosylases: NTH1 or OGG1 (of the Nth family) or NEIL1 or NEIL2 (of the Nei family). Here we show that Fe(II/III) and Cu(II) at physiological levels bind to NEIL1 and NEIL2 to alter their secondary structure and strongly inhibit repair of mutagenic 5-hydroxyuracil, a common cytosine oxidation product, both in vitro and in neuroblastoma (SH-SY5Y) cell extract by affecting the base excision and AP lyase activities of NEILs. The specificity of iron/copper inhibition of NEILs is indicated by a lack of similar inhibition of OGG1, which also indicated that the inhibition is due to metal binding to the enzymes and not DNA. Fluorescence and surface plasmon resonance studies show submicromolar binding of copper/iron to NEILs but not OGG1. Furthermore, Fe(II) inhibits the interaction of NEIL1 with downstream base excision repair proteins DNA polymerase β and flap endonuclease-1 by 4–6-fold. These results indicate that iron/copper overload in the neurodegenerative diseases could act as a double-edged sword by both increasing oxidative genome damage and preventing their repair. Interestingly, specific chelators, including the natural chemopreventive compound curcumin, reverse the inhibition of NEILs both in vitro and in cells, suggesting their therapeutic potential.  相似文献   

19.
Immunoglobulin (Ig) diversification by somatic hypermutation in germinal center B cells is instrumental for maturation of the humoral immune response, but also bears the risk of excessive or aberrant genetic changes. Thus, introduction of DNA damage by activation-induced cytidine deaminase as well as DNA repair by multiple pathways need to be tightly regulated during the germinal center response to prevent lymphomagenesis. In the present study, we show that DNA damage checkpoint signaling via checkpoint kinase 1 (Chk1) negatively regulates somatic hypermutation. Chk1 inhibition in human B cell lymphoma lines as well as inactivation of Chk1 alleles by gene targeting in DT40 B cells leads to increased somatic hypermutation. This is apparently due to changes in DNA repair pathways regulated by Chk1, such as a decreased homologous recombination efficiency that also leads to decreased Ig gene conversion in DT40. Our data show that Chk1 signaling plays a crucial role in regulation of Ig diversification and sheds unexpected light on potential origins of aberrant somatic hypermutation in B cell lymphomagenesis.  相似文献   

20.
It has not been resolved whether gammadelta T cells can collaborate with germinal center B cells and support Ig hypermutation during an Ab response to a truly defined T-dependent Ag. In this study, we show that in the absence of alphabeta T cells, immunization with the well-defined T-dependent Ag, (4-hydroxy-3-nitrophenyl) acetyl (NP) conjugate, was able to induce Ig hypermutation. However, the clonotypes of B cells responding to NP were dramatically altered in TCR beta(-/-) mice. Unlike B cells in wild-type mice that use canonical VDJ rearrangements, most NP-responding B cells in mutant mice use analog genes of the J558 gene family. In addition, the majority of anti-NP Abs produced in mutant mice use kappaL chain instead of lambda1L chain, which dominates in mice of Igh(b) background. Thus, the B cell population that collaborates with gammadelta T cells is distinct from B cells interacting with conventional alphabeta Th cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号