首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA ligase IV (LigIV) is critical for nonhomologous end joining (NHEJ), the major DNA double-strand break (DSB) repair pathway in human cells, and LigIV?activity is regulated by XRCC4 and XLF (XRCC4-like factor) interactions. Here, we employ small angle X-ray scattering (SAXS) data to characterize three-dimensional arrangements in solution for full-length XRCC4, XRCC4 in complex with LigIV?tandem BRCT domains and XLF, plus the XRCC4·XLF·BRCT2 complex. XRCC4 forms tetramers mediated through a head-to-head interface, and the XRCC4 C-terminal coiled-coil region folds back on itself to support this interaction. The interaction between XLF and XRCC4 is also mediated via head-to-head interactions. In the XLF·XRCC4·BRCT complex, alternating repeating units of XLF and XRCC4·BRCT place the BRCT domain on one side of the filament. Collective results identify XRCC4 and XLF filaments suitable to align DNA molecules and function to facilitate LigIV end joining required for DSB repair in?vivo.  相似文献   

2.
Hemocyanins are chosen to demonstrate the contribution of electron microscopy to the study of protein molecules. The involvement of gegative staining, computer-image processing and the first with cryo-electron microscopy are discussed.  相似文献   

3.
Cells respond to ionizing radiation (IR)–induced DNA double-strand breaks (DSBs) by orchestrating events that coordinate cell cycle progression and DNA repair. How cells signal and repair DSBs is not yet fully understood. A genome-wide RNA interference screen in Caenorhabditis elegans identified egr-1 as a factor that protects worm cells against IR. The human homologue of egr-1, MTA2 (metastasis-associated protein 2), is a subunit of the nucleosome-remodeling and histone deacetylation (NuRD) chromatin-remodeling complex. We show that knockdown of MTA2 and CHD4 (chromodomain helicase DNA-binding protein 4), the catalytic subunit (adenosine triphosphatase [ATPase]) of NuRD, leads to accumulation of spontaneous DNA damage and increased IR sensitivity. MTA2 and CHD4 accumulate in DSB-containing chromatin tracks generated by laser microirradiation. Directly at DSBs, CHD4 stimulates RNF8/RNF168-dependent formation of ubiquitin conjugates to facilitate the accrual of RNF168 and BRCA1. Finally, we show that CHD4 promotes DSB repair and checkpoint activation in response to IR. Thus, the NuRD chromatin–remodeling complex is a novel regulator of DNA damage responses that orchestrates proper signaling and repair of DSBs.  相似文献   

4.
DNA polymerase III (Pol III) is the catalytic α subunit of the bacterial DNA Polymerase III holoenzyme. To reach maximum activity, Pol III binds to the DNA sliding clamp β and the exonuclease ε that provide processivity and proofreading, respectively. Here, we characterize the architecture of the Pol III–clamp–exonuclease complex by chemical crosslinking combined with mass spectrometry and biochemical methods, providing the first structural view of the trimeric complex. Our analysis reveals that the exonuclease is sandwiched between the polymerase and clamp and enhances the binding between the two proteins by providing a second, indirect, interaction between the polymerase and clamp. In addition, we show that the exonuclease binds the clamp via the canonical binding pocket and thus prevents binding of the translesion DNA polymerase IV to the clamp, providing a novel insight into the mechanism by which the replication machinery can switch between replication, proofreading, and translesion synthesis.  相似文献   

5.
In this study, we attempted to elucidate the E3 ubiquitin ligase for topo IIα. When cullins and VHL were ectopically expressed in HT1080 and HEK293T cells, topo IIα was degraded most prominently in cullin 2- and VHL-expressing cells. Cullin 2 and the β domain (aa 114-123) of VHL, a subunit of the ECV (Elongin B/C-cullin 2-VHL protein) complex, specifically interact with the ATPase domain of topo IIα. We identified that topo IIα associated with endogenous Elongin C. In HT1080 cells co-transfected with deletion mutants of topo IIα GRDD (glucose-regulated destruction domain) and VHL, topo IIα was degraded by VHL expression. These results demonstrate that ECV acts as E3 ubiquitin ligase targeting GRDD-independent topo IIα to the ubiquitin-proteasome pathway.  相似文献   

6.
7.
Maintaining genomic stability is critical for the prevention of disease. Numerous DNA repair pathways help to maintain genomic stability by correcting potentially lethal or disease-causing lesions to our genomes. Mounting evidence suggests that the post-translational modification sumoylation plays an important regulatory role in several aspects of DNA repair. The E3 SUMO ligase MMS21/NSE2 has gained increasing attention for its function in homologous recombination (HR), an error-free DNA repair pathway that mediates repair of double-strand breaks (DSBs) using the sister chromatid as a repair template. MMS21/NSE2 is part of the SMC5/6 complex, which has been shown to facilitate DSB repair, collapsed replication fork restart, and telomere elongation by HR. Here, I review the function of the SMC5/6 complex and its associated MMS21/NSE2 SUMO ligase activity in homologous recombination.  相似文献   

8.
Summary The ultrastructure of the paracervical (Frankenhäuser) ganglion in the rat was studied after immersion or perfusion fixation with glutaraldehyde followed by post-osmification. This ganglion is located at the uterovaginal junction in the vicinity of arteria uterina and contains three neuronal cell types. (1) Principal neurons have a fine structure mainly similar to the ganglion cells of other autonomic ganglia. (2) Small granule-containing cells occur in clusters often close to fenestrated capillaries. They are divided into two subgroups according to the size of their cytoplasmic granules; those containing only small granulated vesicles of 800 to 1400 Å in diameter and those having also large granulated vesicles of 2000 to 3000 Å in diameter. (3) Vacuolated nerve cells are large cells that resemble the principal neurons in their cytoplasmic components, except that they contain one to ten vacuoles with corpuscles of different size and shape. The possible physiological significance of the small, granule-containing cells in the uterine function is discussed.  相似文献   

9.
Yilun Liu 《DNA Repair》2010,9(3):325-330
RECQ proteins are conserved DNA helicases in both prokaryotes and eukaryotes. The importance of the RECQ family helicases in human health is demonstrated by their roles as cancer suppressors that are vital for preserving genome integrity. Mutations in one of the RECQ family proteins, RECQ4, not only result in developmental abnormalities and cancer predispositions, but are also linked to premature aging. Therefore, defining the function and regulation of the RECQ4 protein is fundamental to our understanding of both the aging process and cancer pathogenesis. This review will summarize the clinical effect of RECQ4 in human health, and discuss the recent progress and debate in defining the complex molecular function of RECQ4 in DNA metabolism.  相似文献   

10.
Although tyrosyl-DNA phosphodiesterase (TDP1) is capable of removing blocked 3′ termini from DNA double-strand break ends, it is uncertain whether this activity plays a role in double-strand break repair. To address this question, affinity-tagged TDP1 was overexpressed in human cells and purified, and its interactions with end joining proteins were assessed. Ku and DNA-PKcs inhibited TDP1-mediated processing of 3′-phosphoglycolate double-strand break termini, and in the absence of ATP, ends sequestered by Ku plus DNA-PKcs were completely refractory to TDP1. Addition of ATP restored TDP1-mediated end processing, presumably due to DNA-PK-catalyzed phosphorylation. Mutations in the 2609–2647 Ser/Thr phosphorylation cluster of DNA-PKcs only modestly affected such processing, suggesting that phosphorylation at other sites was important for rendering DNA ends accessible to TDP1. In human nuclear extracts, about 30% of PG termini were removed within a few hours despite very high concentrations of Ku and DNA-PKcs. Most such removal was blocked by the DNA-PK inhibitor KU-57788, but ~5% of PG termini were removed in the first few minutes of incubation even in extracts preincubated with inhibitor. The results suggest that despite an apparent lack of specific recruitment of TDP1 by DNA-PK, TDP1 can gain access to and can process blocked 3′ termini of double-strand breaks before ends are fully sequestered by DNA-PK, as well as at a later stage after DNA-PK autophosphorylation. Following cell treatment with calicheamicin, which specifically induces double-strand breaks with protruding 3′-PG termini, TDP1-mutant SCAN1 (spinocerebellar ataxia with axonal neuropathy) cells exhibited a much higher incidence of dicentric chromosomes, as well as higher incidence of chromosome breaks and micronuclei, than normal cells. This chromosomal hypersensitivity, as well as a small but reproducible enhancement of calicheamicin cytotoxicity following siRNA-mediated TDP1 knockdown, suggests a role for TDP1 in repair of 3′-PG double-strand breaks in vivo.  相似文献   

11.
Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5′-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2′-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs.  相似文献   

12.
13.
《FEBS letters》2014,588(24):4637-4644
DNA double-strand breaks can be repaired by homologous recombination, during which the DNA ends are long-range resected by helicase–nuclease systems to generate 3′ single strand tails. In archaea, this requires the Mre11–Rad50 complex and the ATP-dependent helicase–nuclease complex HerA–NurA. We report the cryo-EM structure of Sulfolobus solfataricus HerA–NurA at 7.4 Å resolution and present the pseudo-atomic model of the complex. HerA forms an ASCE hexamer that tightly interacts with a NurA dimer, with each NurA protomer binding three adjacent HerA HAS domains. Entry to NurA’s nuclease active sites requires dsDNA to pass through a 23 Å wide channel in the HerA hexamer. The structure suggests that HerA is a dsDNA translocase that feeds DNA into the NurA nuclease sites.  相似文献   

14.
The repair of DNA double strand breaks (DSBs) in male germ cells is slower and differently regulated compared to that in somatic cells. Round spermatids show DSB repair and are radioresistant to apoptosis induction. Mutation induction studies using ionizing irradiation, indicated a high frequency of chromosome aberrations (CA) in the next generation. Since they are in a G1 comparable stage of the cell cycle, haploid spermatids are expected to repair DSBs by the non-homologous end-joining pathway (NHEJ). However, immunohistochemical evidence indicates that not all components of the classical NHEJ pathway are available since the presence of DNA-PKcs cannot be shown. Here, we demonstrate that round spermatids, as well as most other types of male germ cells express both Parp1 and XRCC1. Therefore, we have determined whether the alternative Parp1/XRCC1 dependent NHEJ pathway is active in these nuclei and also have tested for classical NHEJ activity by a genetic method. To evaluate DSB repair in SCID mice, deficient for DNA-PKcs, and to study the involvement of the Parp1/XRCC1 dependent NHEJ pathway in round spermatids, the loss of γ-H2AX foci after irradiation has been determined in nucleus spreads of round spermatids of SCID mice and in nucleus spreads and histological sections of Parp1-inhibited mice and their respective controls. Results show that around half of the breaks in randomly selected round spermatids are repaired between 1 and 8 h after irradiation. The repair of 16% of the induced DSBs requires DNA-PKcs and 21% Parp1. Foci numbers in the Parp1-inhibited testes tend to be higher in spermatids of all epithelial stages reaching significance in stages I–III which indicates an active Parp1/XRCC1 pathway in round spermatids and a decreased repair capacity in later round spermatid stages. In Parp1-inhibited SCID mice only 14.5% of the breaks were repaired 8 h after irradiation indicating additivity of the two NHEJ pathways in round spermatids.  相似文献   

15.
Electron microscopy and single-particle averaging were performed on isolated reaction centre (RC)—antenna complexes (RC–LH1–PufX complexes) of Rhodobaca bogoriensis strain LBB1, with the aim of establishing the LH1 antenna conformation, and, in particular, the structural role of the PufX protein. Projection maps of dimeric complexes were obtained at 13 Å resolution and show the positions of the 2 × 14 LH1 α- and β-subunits. This new dimeric complex displays two open, C-shaped LH1 aggregates of 13 αβ polypeptides partially surrounding the RCs plus two LH1 units forming the dimer interface in the centre. Between the interface and the two half rings are two openings on each side. Next to the openings, there are four additional densities present per dimer, considered to be occupied by four copies of PufX. The position of the RC in our model was verified by comparison with RC–LH1–PufX complexes in membranes. Our model differs from previously proposed configurations for Rhodobacter species in which the LH1 ribbon is continuous in the shape of an S, and the stoichiometry is of one PufX per RC.  相似文献   

16.
The PD-(D/E)XK type II restriction endonuclease ThaI cuts the target sequence CG/CG with blunt ends. Here, we report the 1.3 Å resolution structure of the enzyme in complex with substrate DNA and a sodium or calcium ion taking the place of a catalytic magnesium ion. The structure identifies Glu54, Asp82 and Lys93 as the active site residues. This agrees with earlier bioinformatic predictions and implies that the PD and (D/E)XK motifs in the sequence are incidental. DNA recognition is very unusual: the two Met47 residues of the ThaI dimer intercalate symmetrically into the CG steps of the target sequence. They approach the DNA from the minor groove side and penetrate the base stack entirely. The DNA accommodates the intercalating residues without nucleotide flipping by a doubling of the CG step rise to twice its usual value, which is accompanied by drastic unwinding. Displacement of the Met47 side chains from the base pair midlines toward the downstream CG steps leads to large and compensating tilts of the first and second CG steps. DNA intercalation by ThaI is unlike intercalation by HincII, HinP1I or proteins that bend or repair DNA.  相似文献   

17.
18.
Eukaryotic genomes are packaged into chromatin, which is the physiological substrate for all DNA transactions, including DNA damage and repair. Chromatin organization imposes major constraints on DNA damage repair and thus undergoes critical rearrangements during the repair process. These rearrangements have been integrated into the “access–repair–restore” (ARR) model, which provides a molecular framework for chromatin dynamics in response to DNA damage. Here, we take a historical perspective on the elaboration of this model and describe the molecular players involved in damaged chromatin reorganization in human cells. In particular, we present our current knowledge of chromatin assembly coupled to DNA damage repair, focusing on the role of histone variants and their dedicated chaperones. Finally, we discuss the impact of chromatin rearrangements after DNA damage on chromatin function and epigenome maintenance.  相似文献   

19.
Poly(ADP-ribose) polymerases (PARP) attach poly(ADP-ribose) (PAR) chains to various proteins including themselves and chromatin. Topoisomerase I (Top1) regulates DNA supercoiling and is the target of camptothecin and indenoisoquinoline anticancer drugs, as it forms Top1 cleavage complexes (Top1cc) that are trapped by the drugs. Endogenous and carcinogenic DNA lesions can also trap Top1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1), a key repair enzyme for trapped Top1cc, hydrolyzes the phosphodiester bond between the DNA 3′-end and the Top1 tyrosyl moiety. Alternative repair pathways for Top1cc involve endonuclease cleavage. However, it is unknown what determines the choice between TDP1 and the endonuclease repair pathways. Here we show that PARP1 plays a critical role in this process. By generating TDP1 and PARP1 double-knockout lymphoma chicken DT40 cells, we demonstrate that TDP1 and PARP1 are epistatic for the repair of Top1cc. The N-terminal domain of TDP1 directly binds the C-terminal domain of PARP1, and TDP1 is PARylated by PARP1. PARylation stabilizes TDP1 together with SUMOylation of TDP1. TDP1 PARylation enhances its recruitment to DNA damage sites without interfering with TDP1 catalytic activity. TDP1–PARP1 complexes, in turn recruit X-ray repair cross-complementing protein 1 (XRCC1). This work identifies PARP1 as a key component driving the repair of trapped Top1cc by TDP1.  相似文献   

20.
The structure of purified phage λ repressor has been examined by high resolution electron microscopy. The repressor molecule appears predominantly as a tetramer of about 95 Å × 120 Å. We have proposed a model to account for the variety of aspects seen on the electron micrographs. Spreading DNA without protein film and use of uranyl formate staining allowed the simultaneous visualization of the DNA and the structure of the repressor molecule bound to it. Mapping the positions of λ repressor bound to whole λ DNA shows preferential binding to the region containing the operators. At high resolution multiple binding of repressor to the operator can be demonstrated. Depending on the amount of repressor present, rows of one to four repressor tetramers are seen on the DNA, confirming the model of the operator containing four binding sites for repressor. The bound repressor can consequently protect against nuclease digestion of operator pieces of approximately 30, 57, 87 and 111 base-pairs. The isolated operator appears in the electron microscope as short double-stranded DNA fragments which can be shown to rebind repressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号