首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Prolonged psychosocial stress is a condition assessed through self-reports. Here we aimed to identify biochemical markers for screening and early intervention in women.

Methods

Plasma concentrations of interleukin (IL) 1-α, IL1-β, IL-2, IL-4, IL-6, IL-8, IL-10, interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), thyroid stimulating hormone (TSH), total tri-iodothyronine (TT3), total thyroxine (TT4), prolactin, and testosterone were measured in: 195 women on long-term sick-leave for a stress-related affective disorder, 45 women at risk for professional burnout, and 84 healthy women.

Results

We found significantly increased levels of MCP-1, VEGF and EGF in women exposed to prolonged psychosocial stress. Statistical analysis indicates that they independently associate with a significant risk for being classified as ill.

Conclusions

MCP-1, EGF, and VEGF are potential markers for screening and early intervention in women under prolonged psychosocial stress.  相似文献   

2.

Introduction

Sjögren''s syndrome (SjS) is a systemic autoimmune disease characterized by decreased salivary and lacrimal gland secretions, resulting in severe dry mouth and dry eyes. Recent studies have suggested that TH17 cells and its signature cytokine IL-17 are involved in the underlying pathogenic mechanisms leading to destructive inflammation and autoimmunity. In the present study, we examined whether IL-27, a natural inhibitor of TH17 activity, could down-regulate or reverse SjS in C57BL/6.NOD-Aec1Aec2 mice, a model of primary-SjS.

Methods

Recombinant serotype 2 adeno-associated viral (AAV2) vectors expressing either IL-27 (rAAV2-IL27) or LacZ (rAAV2-LacZ) were injected into 6 or 14 week-old C57BL/6.NOD-Aec1Aec2 mice. Changes in IL-27, IL-17, and IL-10 cytokine levels in peripheral blood were determined by ELISAs, while flow cytometry analyses were used to quantify cytokine-positive splenocytes. Histological assessment of salivary glands, anti-nuclear autoantibody (ANA) staining, and stimulated saliva flow rates were used to profile SjS disease severity.

Results

Mice systemically treated with intravenous rAAV2-IL27 injections at either 6 or 14 weeks of age exhibited long-term elevated levels of serum IL-27 with concomitantly reduced levels of IL-17 compared with sera from mice injected with rAAV2-LacZ or saline out to 20 weeks post-inoculation. Most importantly, disease profiles revealed that rAAV2-IL27 treatment had little effect on lymphocytic focus (LF) scores, but resulted in structural changes in LF, lower titers of ANAs with changes in staining patterns, and a less severe clinical disease as determined by saliva flow rates.

Conclusions

These data support the concept that IL-27, when provided exogenously, can induce a suppressive effect on SjS development and thus may be an effective therapeutic agent for regulating TH17 pro-inflammatory activity in autoimmune diseases where the TH17 system has been shown to play an important role in their pathogenesis.  相似文献   

3.
Suh HS  Choi N  Tarassishin L  Lee SC 《PloS one》2012,7(4):e35115

Background

The essential role of progranulin (PGRN) as a neurotrophic factor has been demonstrated by the discovery that haploinsufficiency due to GRN gene mutations causes frontotemporal lobar dementia. In addition to neurons, microglia in vivo express PGRN, but little is known about the regulation of PGRN expression by microglia.

Goal

In the current study, we examined the regulation of expression and function of PGRN, its proteolytic enzyme macrophage elastase (MMP-12), as well as the inhibitor of PGRN proteolysis, secretory leukocyte protease inhibitor (SLPI), in human CNS cells.

Methods

Cultures of primary human microglia and astrocytes were stimulated with the TLR ligands (LPS or poly IC), Th1 cytokines (IL-1/IFNγ), or Th2 cytokines (IL-4, IL-13). Results were analyzed by Q-PCR, immunoblotting or ELISA. The roles of MMP-12 and SLPI in PGRN cleavage were also examined.

Results

Unstimulated microglia produced nanogram levels of PGRN, and PGRN release from microglia was suppressed by the TLR ligands or IL-1/IFNγ, but increased by IL-4 or IL-13. Unexpectedly, while astrocytes stimulated with proinflammatory factors released large amounts of SLPI, none were detected in microglial cultures. We also identified MMP-12 as a PGRN proteolytic enzyme, and SLPI as an inhibitor of MMP-12-induced PGRN proteolysis. Experiments employing PGRN siRNA demonstrated that microglial PGRN was involved in the cytokine and chemokine production following TLR3/4 activation, with its effect on TNFα being the most conspicuous.

Conclusions

Our study is the first detailed examination of PGRN in human microglia. Our results establish microglia as a significant source of PGRN, and MMP-12 and SLPI as modulators of PGRN proteolysis. Negative and positive regulation of microglial PGRN release by the proinflammatory/Th1 and the Th2 stimuli, respectively, suggests a fundamentally different aspect of PGRN regulation compared to other known microglial activation products. Microglial PGRN appears to function as an endogenous modulator of innate immune responses.  相似文献   

4.
5.

Background

We recently reported that colon tumor cells stimulate macrophages to release IL-1β, which in turn inactivates GSK3β and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.

Principal Findings

Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1β by neutralizing IL-1β antibody, or silencing of IL-1β in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1β was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Δψ) and activation of caspases were prevented by macrophages or by recombinant IL-1β. Pharmacological inhibition of IL-1β release from macrophages by vitamin D3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1β failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIκB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1β stabilized Snail in tumor cells in an NF-κB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1β, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.

Significance

We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1β, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D3 halts this amplifying loop by interfering with the release of IL-1β from macrophages. Accordingly, vitamin D3 sensitizes tumor cells to TRAIL-induced apoptosis, suggesting that the therapeutic efficacy of TRAIL could be augmented by this readily available chemopreventive agent.  相似文献   

6.
7.

Background

Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced analgesia.

Methodology/Principal findings

In a rat model of neuropathic pain induced by L5 spinal nerve ligation (L5 SNL), intrathecal injection of hydrogen-rich normal saline relieved L5 SNL-induced mechanical allodynia and thermal hyperalgesia. Importantly, repeated administration of hydrogen-rich normal saline did not lead to tolerance. Preemptive treatment with hydrogen-rich normal saline prevented development of neuropathic pain behavior. Immunofluorochrome analysis revealed that hydrogen-rich normal saline treatment significantly attenuated L5 SNL-induced increase of 8-hydroxyguanosine immunoreactive cells in the ipsilateral spinal dorsal horn. Western blot analysis of SDS/PAGE-fractionated tyrosine-nitrated proteins showed that L5 SNL led to increased expression of tyrosine-nitrated Mn-containing superoxide dismutase (MnSOD) in the spinal cord, and hydrogen-rich normal saline administration reversed the tyrosine-nitrated MnSOD overexpression. We also showed that the analgesic effect of hydrogen-rich normal saline was associated with decreased activation of astrocytes and microglia, attenuated expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the spinal cord.

Conclusion/Significance

Intrathecal injection of hydrogen-rich normal saline produced analgesic effect in neuropathic rat. Hydrogen-rich normal saline-induced analgesia in neuropathic rats is mediated by reducing the activation of spinal astrocytes and microglia, which is induced by overproduction of hydroxyl and peroxynitrite.  相似文献   

8.

Background

There is evidence that opium addiction has immunosuppressant effects. Coronary artery disease (CAD) is a condition resulted from atherosclerosis which is dependent on the immune response.

Purpose

To evaluate plasma levels of interleukin-6 and interleukin-1Ra in 30 patients with three-vessel coronary artery disease, ejection fraction of more than 35% and to evaluate their changes after prognostic treadmill test in 15 opium addicted and 15 non-addicted patients.

Methods

The participants underwent prognostic treadmill test and plasma levels of interleukin-6 (IL-6) and interleukin-1Ra (IL-1Ra) were evaluated with ELISA method before, just after and 4 hours after the test.

Results

IL-1Ra (2183 pg/ml) tended to decrease over time in the opium addicted group (1372 pg/ml after prognostic treadmill test and 1034 pg/ml 4 hours after that), although such decrease did not reach the statistical significance. IL-1Ra levels were significantly higher in opium addicted than in non addicted patients. Opium addiction had no significant effect on IL-6 changes.

Conclusion

Consumption of opium in CAD patients is associated with higher IL-1Ra levels.  相似文献   

9.

Background

Dendritic cells (DCs) play a pivotal role in the immune system. There are many reports concerning DC-based immunotherapy. The differentiation and maturation of DCs is a critical part of DC-based immunotherapy. We investigated the differentiation and maturation of DCs in response to various stimuli.

Methods

Thirty-one patients with malignant bone and soft tissue tumors were enrolled in this study. All the patients had metastatic tumors and/or recurrent tumors. Peripheral blood mononuclear cells (PBMCs) were suspended in media containing interleukin-4 (IL-4) and granulocyte-macrophage colony stimulating factor (GM-CSF). These cells were then treated with or without 1) tumor lysate (TL), 2) TL + TNF-α, 3) OK-432. The generated DCs were mixed and injected in the inguinal or axillary region. Treatment courses were performed every week and repeated 6 times. A portion of the cells were analyzed by flow cytometry to determine the degree of differentiation and maturation of the DCs. Serum IFN-γ and serum IL-12 were measured in order to determine the immune response following the DC-based immunotherapy.

Results

Approximately 50% of PBMCs differentiated into DCs. Maturation of the lysate-pulsed DCs was slightly increased. Maturation of the TL/TNF-α-pulsed DCs was increased, commensurate with OK-432-pulsed DCs. Serum IFN-γ and serum IL-12 showed significant elevation at one and three months after DC-based immunotherapy.

Conclusions

Although TL-pulsed DCs exhibit tumor specific immunity, TL-pulsed cells showed low levels of maturation. Conversely, the TL/TNF-α-pulsed DCs showed remarkable maturation. The combination of IL-4/GM-CSF/TL/TNF-α resulted in the greatest differentiation and maturation for DC-based immunotherapy for patients with bone and soft tissue tumors.  相似文献   

10.

Background

Resveratrol (3, 4′, 5 tri-hydroxystilbene), a naturally occurring polyphenol, exhibits anti-inflammatory, antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of prostate cancer.

Methodology/Principal Findings

Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by inhibiting tumor cell proliferation (PCNA and Ki67 staining) and inducing apoptosis (TUNEL staining). The combination of resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors, resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27/K IP1, and inhibited the expression of Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by reduced number of blood vessels, and VEGF and VEGFR2 positive cells) and markers of metastasis (MMP-2 and MMP-9). The combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding activity.

Conclusions/Significance

These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the management of prostate cancer.  相似文献   

11.

Background

Spermidine, a naturally occurring polyamine, displays a wide variety of internal biological activities including cell growth and proliferation. However, the molecular mechanisms responsible for its anti-inflammatory activity have not yet been elucidated.

Methods

The anti-inflammatory properties of spermidine were studied using lipopolysaccharide (LPS)-stimulated murine BV2 microglia model. As inflammatory parameters, the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-6 and tumor necrosis factor (TNF)-α were evaluated. We also examined the spermidine''s effect on the activity of nuclear factor-kappaB (NF-κB), and the phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinases (MAPKs) pathways.

Results

Pretreatment with spermidine prior to LPS treatment significantly inhibited excessive production of NO and PGE2 in a dose-dependent manner, and was associated with down-regulation of expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Spermidine treatment also attenuated the production of pro-inflammatory cytokines, including IL-6 and TNF-α, by suppressing their mRNA expressions. The mechanism underlying spermidine-mediated attenuation of inflammation in BV2 cells appeared to involve the suppression of translocation of NF-κB p65 subunit into the nucleus, and the phosphorylation of Akt and MAPKs.

Conclusions

The results indicate that spermidine appears to inhibit inflammation stimulated by LPS by blocking the NF-κB, PI3K/Akt and MAPKs signaling pathways in microglia.  相似文献   

12.

Background

The presence of monocyte-macrophage lineage cells in rejecting kidney transplants is associated with worse graft outcome. At present, it is still unclear how the monocyte-macrophage related responses develop after transplantation. Here, we studied the dynamics, phenotypic and functional characteristics of circulating monocytes during the first 6 months after transplantation and aimed to establish the differences between kidney transplant recipients and healthy individuals.

Methods

Phenotype, activation status and cytokine production capacity of classical (CD14++CD16−), intermediate (CD14++CD16+) and non-classical (CD14+CD16++), monocytes were determined by flow cytometry in a cohort of 33 healthy individuals, 30 renal transplant recipients at transplantation, 19 recipients at 3 months and 16 recipients at 6 months after transplantation using a cross-sectional approach.

Results

The percentage of both CD16+ monocyte subsets was significantly increased in transplant recipients compared to healthy individuals, indicative of triggered innate immunity (p≤0.039). Enhanced production capacity of tumor necrosis factor-α, interferon-γ and interleukin-1β was observed by monocytes at transplantation compared to healthy individuals. Remarkably, three months post-transplant, in presence of potent immunosuppressive drugs and despite improved kidney function, interferon-γ, tumor necrosis factor-α and interleukin-10 production capacity still remained significantly increased.

Conclusion

Our data demonstrate a skewed balance towards pro-inflammatory CD16+ monocytes that is present at the time of transplantation and retained for at least 6 months after transplantation. This shift could be one of the important drivers of early post-transplant cellular immunity.  相似文献   

13.

Background

Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.

Methodology/Principal Findings

We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.

Conclusions/Significance

Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.  相似文献   

14.

Introduction

Mesenchymal stem cells (MSCs) represent promising applications in rheumatoid arthritis (RA). However, the inflammatory niche in the RA synovium could adversely affect MSC function. This study was designed to investigate biologic and immunologic properties of synovium-derived MSCs (SMSCs) in RA, with particular focus on whether cytokines can mediate increase of proliferation of T cells cocultured with SMSCs in RA.

Methods

Compared with SMSCs from eight healthy donors (HDs), SMSCs from 22 patients with RA (RAp) were evaluated. The methyl thiazolyl tetrazolium (MTT) assay was used to assess cell-population doubling and viability. Multipotentiality of SMSCs was examined by using appropriate culture conditions. Flow cytometry was used to investigate the marker phenotype of SMSCs. Immunomodulation potential of SMSCs was examined by mixed peripheral blood mononuclear cells (PBMCs) reactions, and then by PBMCs or synovial T cells with or without the addition of inflammatory cytokines (interleukin-17A (IL-17A), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ)) after stimulation with phytohemagglutinin (PHA), respectively.

Results

SMSCs from RA patients (RA-SMSCs) showed normal population doubling, cell viability, multiple differentiation characteristics, and surface markers. In either mixed PBMC reactions or PBMC proliferation stimulated with PHA, RA-SMSCs showed normal immunomodulation function compared with SMSCs from healthy donors (HD-SMSCs). However, the increase in proliferation of T cells was observed when IL-17A and TNF-α were added alone or in combination.

Conclusions

Our data suggest that the inflammatory niche, especially these cytokines, may increase the proliferation of T cells cocultured with SMSCs in RA.  相似文献   

15.
Choi YK  Nash K  Byrne BJ  Muzyczka N  Song S 《PloS one》2010,5(12):e15073

Background

DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme and plays an important role in determining the molecular fate of the rAAV genome. However, the effect this cellular enzyme on rAAV DNA replication remains elusive.

Methodology/Principal Findings

In the present study, we characterized the roles of DNA-PK on recombinant adeno-associated virus DNA replication. Inhibition of DNA-PK by a DNA-PK inhibitor or siRNA targeting DNA-PKcs significantly decreased replication of AAV in MO59K and 293 cells. Southern blot analysis showed that replicated rAAV DNA formed head-to-head or tail-to-tail junctions. The head-to-tail junction was low or undetectable suggesting AAV-ITR self-priming is the major mechanism for rAAV DNA replication. In an in vitro replication assay, anti-Ku80 antibody strongly inhibited rAAV replication, while anti-Ku70 antibody moderately decreased rAAV replication. Similarly, when Ku heterodimer (Ku70/80) was depleted, less replicated rAAV DNA were detected. Finally, we showed that AAV-ITRs directly interacted with Ku proteins.

Conclusion/Significance

Collectively, our results showed that that DNA-PK enhances rAAV replication through the interaction of Ku proteins and AAV-ITRs.  相似文献   

16.

Background

Glioblastoma is the most common and most lethal form of brain tumor in human. Unfortunately, there is still no effective therapy to this fatal disease and the median survival is generally less than one year from the time of diagnosis. Discovery of ligands that can bind specifically to this type of tumor cells will be of great significance to develop early molecular imaging, targeted delivery and guided surgery methods to battle this type of brain tumor.

Methodology/Principal Findings

We discovered two target-specific aptamers named GBM128 and GBM131 against cultured human glioblastoma cell line U118-MG after 30 rounds selection by a method called cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX). These two aptamers have high affinity and specificity against target glioblastoma cells. They neither recognize normal astraglial cells, nor do they recognize other normal and cancer cell lines tested. Clinical tissues were also tested and the results showed that these two aptamers can bind to different clinical glioma tissues but not normal brain tissues. More importantly, binding affinity and selectivity of these two aptamers were retained in complicated biological environment.

Conclusion/Significance

The selected aptamers could be used to identify specific glioblastoma biomarkers. Methods of molecular imaging, targeted drug delivery, ligand guided surgery can be further developed based on these ligands for early detection, targeted therapy, and guided surgery of glioblastoma leading to effective treatment of glioblastoma.  相似文献   

17.

Background

Epidemiological studies have linked maternal infection during pregnancy to later development of neuropsychiatric disorders in the offspring. In mice, experimental inflammation during embryonic development impairs behavioral and cognitive performances in adulthood. Synaptic dysfunctions may be at the origin of cognitive impairments, however the link between prenatal inflammation and synaptic defects remains to be established.

Methodology/Principal Findings

In this study, we show that prenatal alteration of microglial function, including inflammation, induces delayed synaptic dysfunction in the adult. DAP12 is a microglial signaling protein expressed around birth, mutations of which in the human induces the Nasu-Hakola disease, characterized by early dementia. We presently report that synaptic excitatory currents in mice bearing a loss-of-function mutation in the DAP12 gene (DAP12KI mice) display enhanced relative contribution of AMPA. Furthermore, neurons from DAP12KI P0 pups cultured without microglia develop similar synaptic alterations, suggesting that a prenatal dysfunction of microglia may impact synaptic function in the adult. As we observed that DAP12KI microglia overexpress genes for IL1β, IL6 and NOS2, which are inflammatory proteins, we analyzed the impact of a pharmacologically-induced prenatal inflammation on synaptic function. Maternal injection of lipopolysaccharides induced activation of microglia at birth and alteration of glutamatergic synapses in the adult offspring. Finally, neurons cultured from neonates born to inflamed mothers and cultured without microglia also displayed altered neuronal activity.

Conclusion/Significance

Our results demonstrate that prenatal inflammation is sufficient to induce synaptic alterations with delay. We propose that these alterations triggered by prenatal activation of microglia provide a cellular basis for the neuropsychiatric defects induced by prenatal inflammation.  相似文献   

18.

Objective

The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART).

Methods

Inflammation and endothelial activation were assessed by measuring levels of immunoglobulins, β2-microglobulin, interleukin (IL) 8, tumor necrosis factor α (TNFα), vascular cell adhesion molecule-1 (sVCAM-1), intercellular adhesion molecule-1 (sICAM-1), sE-Selectin, and sP-Selectin.

Results

HIV infected patients had higher levels of β2-microglobulin, IL-8, TNFα, and sICAM-1 than uninfected controls, and HIV infected patients lacked correlation between platelet counts and sP-Selectin levels found in uninfected controls.

Conclusion

Discrete signs of systemic and vascular inflammation persist even after very long term cART.  相似文献   

19.

Background

FRAT1 positively regulates the Wnt/β-catenin signaling pathway by inhibiting GSK-3-mediated phosphorylation of β-catenin. It was originally characterized as a protein frequently rearranged in advanced T cell lymphoma, but has recently also been identified as a proto-oncogene involved in tumorigenesis. Our previous studies showed that FRAT1 was dramatically overexpressed in gliomas and its expression level was significantly increased along with clinicopathological grades.

Methods

In the current study, we used RT-PCR and Western blotting to assess the mRNA and protein levels of FRAT1 in three glioma cell lines. In addition, to evaluate its functional role in gliomas, we examined the effects of FRAT1 knockdown on proliferation, migration and invasion in vitro and tumor growth in vivo using glioblastoma U251 cells and RNAi.

Results

FRAT1 was highly expressed in all three glioma cell lines. RNAi-mediated down-regulation of endogenous FRAT1 in human glioblastoma U251 cells resulted in suppression of cell proliferation, arrest of cell cycle, inhibition of cell migration and invasion in vitro. Moreover, FRAT1 depletion significantly impaired tumor xenograft growth in nude mice.

Conclusions

Our results highlight the potential role of FRAT1 in tumorigenesis and progression of glioblastoma. These findings provide a biological basis for FRAT1 as a potential molecular marker for improved pathological grading and as a novel candidate therapeutic target for glioblastoma management.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号