首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
Specification of the otic anteroposterior axis is one of the earliest patterning events during inner ear development. In zebrafish, Hedgehog signalling is necessary and sufficient to specify posterior otic identity between the 10 somite (otic placode) and 20 somite (early otic vesicle) stages. We now show that Fgf signalling is both necessary and sufficient for anterior otic specification during a similar period, a function that is completely separable from its earlier role in otic placode induction. In lia(-/-) (fgf3(-/-)) mutants, anterior otic character is reduced, but not lost altogether. Blocking all Fgf signalling at 10-20 somites, however, using the pan-Fgf inhibitor SU5402, results in the loss of anterior otic structures and a mirror image duplication of posterior regions. Conversely, overexpression of fgf3 during a similar period, using a heat-shock inducible transgenic line, results in the loss of posterior otic structures and a duplication of anterior domains. These phenotypes are opposite to those observed when Hedgehog signalling is altered. Loss of both Fgf and Hedgehog function between 10 and 20 somites results in symmetrical otic vesicles with neither anterior nor posterior identity, which, nevertheless, retain defined poles at the anterior and posterior ends of the ear. These data suggest that Fgf and Hedgehog act on a symmetrical otic pre-pattern to specify anterior and posterior otic identity, respectively. Each signalling pathway has instructive activity: neither acts simply to repress activity of the other, and, together, they appear to be key players in the specification of anteroposterior asymmetries in the zebrafish ear.  相似文献   

2.
During development of the zebrafish inner ear, regional patterning in the ventral half of the otic vesicle establishes zones of gene expression that correspond to neurogenic, sensory and non-neural cell fates. FGF and Retinoic acid (RA) signalling from surrounding tissues are known to have an early role in otic placode induction and otic axial patterning, but how external signalling cues are translated into intrinsic patterning during otic vesicle (OV) stages is not yet understood. FGF and RA signalling pathway members are expressed in and around the OV, suggesting important roles in later patterning or maintenance events. We have analysed the temporal requirement of FGF and RA signalling for otic development at stages after initial anteroposterior patterning has occurred. We show that high level FGF signalling acts to restrict sensory fates, whereas low levels favour sensory hair cell development; in addition, FGF is both required and sufficient to promote the expression of the non-neural marker otx1b in the OV. RA signalling has opposite roles: it promotes sensory fates, and restricts otx1b expression and the development of non-neural fates. This is surprisingly different from the earlier requirement for RA signalling in specification of non-neural fates via tbx1 expression, and highlights the shift in regulation that takes place between otic placode and vesicle stages in zebrafish. Both FGF and RA signalling are required for the development of the otic neurogenic domain and the generation of otic neuroblasts. In addition, our results indicate that FGF and RA signalling act in a feedback loop in the anterior OV, crucial for pattern refinement.  相似文献   

3.
Fgf and Wnt signalling have been shown to be required for formation of the otic placode in vertebrates. Whereas several Fgfs including Fgf3, Fgf8 and Fgf10 have been shown to participate during early placode induction, Wnt signalling is required for specification and maintenance of the otic placode, and dorsal patterning of the otic vesicle. However, the requirement for specific members of the Wnt gene family for otic placode and vesicle formation and their potential interaction with Fgf signalling has been poorly defined. Due to its spatiotemporal expression during placode formation in the hindbrain Wnt8a has been postulated as a potential candidate for its specification. Here we have examined the role of Wnt8a during formation of the otic placode and vesicle in mouse embryos. Wnt8a expression depends on the presence of Fgf3 indicating a serial regulation between Fgf and Wnt signalling during otic placode induction and specification. Wnt8a by itself however is neither essential for placode specification nor redundantly required together with Fgfs for otic placode and vesicle formation. Interestingly however, Wnt8a and Fgf3 are redundantly required for expression of Fgf15 in the hindbrain indicating additional reciprocal interactions between Fgf and Wnt signalling. Further reduction of Wnt signalling by the inactivation of Wnt1 in a Wnt8a mutant background revealed a redundant requirement for both genes during morphogenesis of the dorsal portion of the otic vesicle.  相似文献   

4.
The Drosophila segment polarity gene fused, which encodes a serine threonine kinase, is required to transmit the Hedgehog (Hh) signal in imaginal discs. To explore the functional homology between the human protein FUSED (hFU) and the Drosophila protein fused (dFu), we have subjected hFU to a precise and well-defined Hh signalling assay of Drosophila wing development. In the wildtype, hFU affects the expression of Hh target genes leading thus to defects in adult wings. In fu mutants, overexpression of hFU cannot rescue the fu phenotype. These results suggest that hFU in Drosophila interferes with endogenous Hh signalling probably by competing with endogenous dFu when binding its partners but cannot perform the normal Fu function.Edited by C. Desplan  相似文献   

5.
Currently, few factors have been identified that provide the inductive signals necessary to transform the simple otic placode into the complex asymmetric structure of the adult vertebrate inner ear. We provide evidence that Hedgehog signalling from ventral midline structures acts directly on the zebrafish otic vesicle to induce posterior otic identity. We demonstrate that two strong Hedgehog pathway mutants, chameleon (con(tf18b)) and slow muscle omitted (smu(b641)) exhibit a striking partial mirror image duplication of anterior otic structures, concomitant with a loss of posterior otic domains. These effects can be phenocopied by overexpression of patched1 mRNA to reduce Hedgehog signalling. Ectopic activation of the Hedgehog pathway, by injection of sonic hedgehog or dominant-negative protein kinase A RNA, has the reverse effect: ears lose anterior otic structures and show a mirror image duplication of posterior regions. By using double mutants and antisense morpholino analysis, we also show that both Sonic hedgehog and Tiggy-winkle hedgehog are involved in anteroposterior patterning of the zebrafish otic vesicle.  相似文献   

6.
7.
The swimbladder is a hydrostatic organ in fish postulated as a homolog of the tetrapod lung. While lung development has been well studied, the molecular mechanism of swimbladder development is essentially uncharacterized. In the present study, swimbladder development in zebrafish was analyzed by using several molecular markers: hb9 (epithelium), fgf10a and acta2 (mesenchyme), and anxa5 (mesothelium), as well as in vivo through enhancer trap transgenic lines Et(krt4:EGFP)sq33-2 and Et(krt4:EGFP)sqet3 that showed strong EGFP expression in the swimbladder epithelium and outer mesothelium respectively. We defined three phases of swimbladder development: epithelial budding between 36 and 48 hpf, growth with the formation of two additional mesodermal layers up to 4.5 dpf, and inflation of posterior and anterior chambers at 4.5 and 21 dpf respectively. Similar to those in early lung development, conserved expression of Hedgehog (Hh) genes, shha and ihha, in the epithelia, and Hh receptor genes, ptc1 and ptc2, as well as fgf10a in mesenchyme was observed. By analyzing several mutants affecting Hh signaling and Ihha morphants, we demonstrated an essential role of Hh signaling in swimbladder development. Furthermore, time-specific Hh inhibition by cyclopamine revealed different requirements of Hh signaling in the formation and organization of all three tissue layers of swimbladder.  相似文献   

8.
9.
The inner ear of adult agnathan vertebrates is relatively symmetric about the anteroposterior axis, with only two semicircular canals and a single sensory macula. This contrasts with the highly asymmetric gnathostome arrangement of three canals and several separate maculae. Symmetric ears can be obtained experimentally in gnathostomes in several ways, including by manipulation of zebrafish Hedgehog signalling, and it has been suggested that these phenotypes might represent an atavistic condition. We have found, however, that the symmetry of the adult lamprey inner ear is not reflected in its early development; the lamprey otic vesicle is highly asymmetric about the anteroposterior axis, both morphologically and molecularly, and bears a striking resemblance to the zebrafish otic vesicle. The single sensory macula originates as two foci of hair cells, and later shows regions of homology to the zebrafish utricular and saccular maculae. It is likely, therefore, that the last common ancestor of lampreys and gnathostomes already had well-defined otic anteroposterior asymmetries. Both lamprey and zebrafish otic vesicles express a target of Hedgehog signalling, patched, indicating that both are responsive to Hedgehog signalling. One significant distinction between agnathans and gnathostomes, however, is the acquisition of otic Otx1 expression in the gnathostome lineage. We show that Otx1 knockdown in zebrafish, as in Otx1(-/-) mice, gives rise to lamprey-like inner ears. The role of Otx1 in the gnathostome ear is therefore highly conserved; otic Otx1 expression is likely to account not only for the gain of a third semicircular canal and crista in gnathostomes, but also for the separation of the zones of the single macula into distinct regions.  相似文献   

10.
The role of Six1 in mammalian auditory system development   总被引:7,自引:0,他引:7  
The homeobox Six genes, homologues to Drosophila sine oculis (so) gene, are expressed in multiple organs during mammalian development. However, their roles during auditory system development have not been studied. We report that Six1 is required for mouse auditory system development. During inner ear development, Six1 expression was first detected in the ventral region of the otic pit and later is restricted to the middle and ventral otic vesicle within which, respectively, the vestibular and auditory epithelia form. By contrast, Six1 expression is excluded from the dorsal otic vesicle within which the semicircular canals form. Six1 is also expressed in the vestibuloacoustic ganglion. At E15.5, Six1 is expressed in all sensory epithelia of the inner ear. Using recently generated Six1 mutant mice, we found that all Six1(+/-) mice showed some degree of hearing loss because of a failure of sound transmission in the middle ear. By contrast, Six1(-/-) mice displayed malformations of the auditory system involving the outer, middle and inner ears. The inner ear development in Six1(-/-) embryos arrested at the otic vesicle stage and all components of the inner ear failed to form due to increased cell death and reduced cell proliferation in the otic epithelium. Because we previously reported that Six1 expression in the otic vesicle is Eya1 dependent, we first clarified that Eya1 expression was unaffected in Six1(-/-) otic vesicle, further demonstrating that the Drosophila Eya-Six regulatory cassette is evolutionarily conserved during mammalian inner ear development. We also analyzed several other otic markers and found that the expression of Pax2 and Pax8 was unaffected in Six1(-/-) otic vesicle. By contrast, Six1 is required for the activation of Fgf3 expression and the maintenance of Fgf10 and Bmp4 expression in the otic vesicle. Furthermore, loss of Six1 function alters the expression pattern of Nkx5.1 and Gata3, indicating that Six1 is required for regional specification of the otic vesicle. Finally, our data suggest that the interaction between Eya1 and Six1 is crucial for the morphogenesis of the cochlea and the posterior ampulla during inner ear development. These analyses establish a role for Six1 in early growth and patterning of the otic vesicle.  相似文献   

11.
In vertebrates, the inner ear arises from the otic placode, a thickened swathe of ectoderm that invaginates to form the otic vesicle. We report that histone demethylase KDM4B is dynamically expressed during early stages of chick inner ear formation. A loss of KDM4B results in defective invagination and striking morphological changes in the otic epithelium, characterized by abnormal localization of adhesion and cytoskeletal molecules and reduced expression of several inner ear markers, including Dlx3. In vivo chromatin immunoprecipitation reveals direct and dynamic occupancy of KDM4B and its target, H3K9me3, at regulatory regions of the Dlx3 locus. Accordingly, coelectroporations of DLX3 or KDM4B encoding constructs, but not a catalytically dead mutant of KDM4B, rescue the ear invagination phenotype caused by KDM4B knockdown. Moreover, a loss of DLX3 phenocopies a loss of KDM4B. Collectively, our findings suggest that KDM4B play a critical role during inner ear invagination via modulating histone methylation of the direct target Dlx3.  相似文献   

12.
13.

Background  

In vertebrates, the inner ear is comprised of the cochlea and vestibular system, which develop from the otic vesicle. This process is regulated via inductive interactions from surrounding tissues. Tbx1, the gene responsible for velo-cardio-facial syndrome/DiGeorge syndrome in humans, is required for ear development in mice. Tbx1 is expressed in the otic epithelium and adjacent periotic mesenchyme (POM), and both of these domains are required for inner ear formation. To study the function of Tbx1 in the POM, we have conditionally inactivated Tbx1 in the mesoderm while keeping expression in the otic vesicle intact.  相似文献   

14.
During Drosophila wing development, Hedgehog (Hh) signalling is required to pattern the imaginal disc epithelium along the anterior-posterior (AP) axis. The Notch (N) and Wingless (Wg) signalling pathways organise the dorsal-ventral (DV) axis, including patterning along the presumptive wing margin. Here, we describe a functional hierarchy of these signalling pathways that highlights the importance of competing influences of Hh, N, and Wg in establishing gene expression domains. Investigation of the modulation of Hh target gene expression along the DV axis of the wing disc revealed that collier/knot (col/kn), patched (ptc), and decapentaplegic (dpp) are repressed at the DV boundary by N signalling. Attenuation of Hh signalling activity caused by loss of fused function results in a striking down-regulation of col, ptc, and engrailed (en) symmetrically about the DV boundary. We show that this down-regulation depends on activity of the canonical Wg signalling pathway. We propose that modulation of the response of cells to Hh along the future proximodistal (PD) axis is necessary for generation of the correctly patterned three-dimensional adult wing. Our findings suggest a paradigm of repression of the Hh response by N and/or Wnt signalling that may be applicable to signal integration in vertebrate appendages.  相似文献   

15.
16.
While the membrane potential of cells has been shown to be patterned in some tissues, specific roles for membrane potential in regulating signalling pathways that function during development are still being established. In the Drosophila wing imaginal disc, Hedgehog (Hh) from posterior cells activates a signalling pathway in anterior cells near the boundary which is necessary for boundary maintenance. Here, we show that membrane potential is patterned in the wing disc. Anterior cells near the boundary, where Hh signalling is most active, are more depolarized than posterior cells across the boundary. Elevated expression of the ENaC channel Ripped Pocket (Rpk), observed in these anterior cells, requires Hh. Antagonizing Rpk reduces depolarization and Hh signal transduction. Using genetic and optogenetic manipulations, in both the wing disc and the salivary gland, we show that membrane depolarization promotes membrane localization of Smoothened and augments Hh signalling, independently of Patched. Thus, membrane depolarization and Hh‐dependent signalling mutually reinforce each other in cells immediately anterior to the compartment boundary.  相似文献   

17.
Axial patterning in the vertebrate inner ear has been studied for over eighty years, and recent work has made great progress towards an understanding of the molecular mechanisms responsible for establishing asymmetries about the otic axes. Tissues extrinsic to the ear provide sources of signalling molecules that are active early in development, at or before otic placode stages, while intrinsic factors interpret these signals to establish and maintain axial pattern. Key features of dorsoventral otic patterning in amniote embryos involve Wnt and Fgf signalling from the hindbrain and Hh signalling from midline tissues (notochord and floorplate). Mutual antagonism between these pathways and their downstream targets within the otic epithelium help to refine and maintain dorsoventral axial patterning in the ear. In the zebrafish ear, the same tissues and signals are implicated, but appear to play a role in anteroposterior, rather than dorsoventral, otic patterning. Despite this paradox, conservation of mechanisms may be higher than is at first apparent.  相似文献   

18.
Fgf3 and Fgf10 are required for mouse otic placode induction   总被引:1,自引:0,他引:1  
The inner ear, which contains the sensory organs specialised for audition and balance, develops from an ectodermal placode adjacent to the developing hindbrain. Tissue grafting and recombination experiments suggest that placodal development is directed by signals arising from the underlying mesoderm and adjacent neurectoderm. In mice, Fgf3 is expressed in the neurectoderm prior to and concomitant with placode induction and otic vesicle formation, but its absence affects only the later stages of otic vesicle morphogenesis. We show here that mouse Fgf10 is expressed in the mesenchyme underlying the prospective otic placode. Embryos lacking both Fgf3 and Fgf10 fail to form otic vesicles and have aberrant patterns of otic marker gene expression, suggesting that FGF signals are required for otic placode induction and that these signals emanate from both the hindbrain and mesenchyme. These signals are likely to act directly on the ectoderm, as double mutant embryos showed normal patterns of gene expression in the hindbrain. Cell proliferation and survival were not markedly affected in double mutant embryos, suggesting that the major role of FGF signals in otic induction is to establish normal patterns of gene expression in the prospective placode. Finally, examination of embryos carrying three out of the four mutant Fgf alleles revealed intermediate phenotypes, suggesting a quantitative requirement for FGF signalling in otic vesicle formation.  相似文献   

19.
The vertebrate inner ear develops from an ectodermal placode adjacent to rhombomeres 4 to 6 of the segmented hindbrain. The placode then transforms into a vesicle and becomes regionalised along its anteroposterior, dorsoventral and mediolateral axes. To investigate the role of hindbrain signals in instructing otic vesicle regionalisation, we analysed ear development in zebrafish mutants for vhnf1, a gene expressed in the caudal hindbrain during otic induction and regionalisation. We show that, in vhnf1 homozygous embryos, the patterning of the otic vesicle is affected along both the anteroposterior and dorsoventral axes. First, anterior gene expression domains are either expanded along the whole anteroposterior axis of the vesicle or duplicated in the posterior region. Second, the dorsal domain is severely reduced, and cell groups normally located ventrally are shifted dorsally, sometimes forming a single dorsal patch along the whole AP extent of the otic vesicle. Third, and probably as a consequence, the size and organization of the sensory and neurogenic epithelia are disturbed. These results demonstrate that, in zebrafish, signals from the hindbrain control the patterning of the otic vesicle, not only along the anteroposterior axis, but also, as in amniotes, along the dorsoventral axis. They suggest that, despite the evolution of inner ear structure and function, some of the mechanisms underlying the regionalisation of the otic vesicle in fish and amniotes have been conserved.  相似文献   

20.
The inner ear of all jawed vertebrates arises from the epithelium of the otic vesicle and contains three semicircular canals, otoliths, and sets of sensory neurons, all positioned precisely within the cranium to detect head orientation and movement. The msh-C gene and two new homebox genes, msh-D and a gene related to distal-less, dlx-3, are each expressed in distinct regions of the otic vesicle during its early development in zebrafish embryos. Cells in the ectoderm express dlx-3 before induction of the otic vesicle, suggesting that dlx-3 has an early function in this process. Later, cells aligned with the future axes of the semicircular canals specifically express either dlx-3 or msh-D. Even later, sensory hair cells express msh-C and msh-D, while other cells of the epithelium express dlx-3. The early expression of these genes could specify the orientation and morphogenesis of the inner ear, whereas their later expression could specify the fates of particular cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号