首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Previous small scale sequencing studies have indicated that DNA polymerase β (pol β) variants are present on average in 30% of human tumors of varying tissue origin. Many of these variants have been shown to have aberrant enzyme function in vitro and to induce cellular transformation and/or genomic instability in vivo, suggesting that their presence is associated with tumorigenesis or its progression. In this study, the human POLB gene was sequenced in a collection of 134 human colorectal tumors and was found to contain coding region mutations in 40% of the samples. The variants map to many different sites of the pol β protein and are not clustered. Many variants are nonsynonymous amino acid substitutions predicted to affect enzyme function. A subset of these variants was found to have reduced enzyme activity in vitro and failed to fully rescue pol β-deficient cells from methylmethane sulfonate-induced cytotoxicity. Tumors harboring variants with reduced enzyme activity may have compromised base excision repair function, as evidenced by our methylmethane sulfonate sensitivity studies. Such compromised base excision repair may drive tumorigenesis by leading to an increase in mutagenesis or genomic instability.  相似文献   

3.
Kim Disher  Adonis Skandalis 《Génome》2007,50(10):946-953
The majority of human genes generate mRNA splice variants and while there is little doubt that alternative splicing is an important biological phenomenon, it has also become apparent that some splice variants are associated with disease. To elucidate the molecular mechanisms responsible for generating aberrant splice variants, we have investigated alternative splicing of the human genes HPRT and POLB following oxidative stress in different genetic backgrounds. Our study revealed that splicing fidelity is sensitive to oxidative stress. Following treatment of cells with H2O2, the overall frequency of aberrant, unproductive splice variants increased in both loci. At least in POLB, splicing fidelity is p53 dependent. In the absence of p53, the frequency of POLB splice variants is elevated but oxidative stress does not further increase the frequency of splice variants. Our data indicate that mis-splicing following oxidative stress represents a novel and significant genotoxic outcome and that it is not simply DNA lesions induced by oxidative stress that lead to mis-splicing but changes in the alternative splicing machinery itself.  相似文献   

4.
We have developed an in vitro DNA polymerase forward mutation assay using damaged DNA templates that contain the herpes simplex virus type 1 thymidine kinase (HSV-tk) gene. The quantitative method uses complementary strand hybridization to gapped duplex DNA molecules and chloramphenicol selection. This design ensures exclusive analysis of mutations derived from the DNA strand produced during in vitro synthesis. We have examined the accuracy of DNA synthesis catalyzed by calf thymus polymerase alpha-primase, polymerase beta and exonuclease-deficient Klenow polymerase. Using unmodified DNA templates, polymerase beta displays a unique specificity for the loss of two bases in a dinucleotide repeat sequence within the HSV-tk locus. Treatment of the DNA template with N-ethyl-N-nitrosourea resulted in a dose-dependent inhibition of DNA synthesis concomitant with an increased mutation frequency. Similar dose-response curves were measured for the three polymerases examined; thus the identity of the DNA polymerase does not appear to affect the mutagenic potency of ethyl lesions. The HSV-tk system is unique in that damage-induced mutagenesis can be analyzed both quantitatively and qualitatively in human cells, in bacterial cells and in in vitro DNA synthesis reactions at a single target sequence.  相似文献   

5.
Gastric cancer (GC) is a major cause of global cancer mortality. Genetic variations in DNA repair genes can modulate DNA repair capability and, consequently, have been associated with risk of developing cancer. We have previously identified a T to C point mutation at nucleotide 889 (T889C) in DNA polymerase beta (POLB) gene, a key enzyme involved in base excision repair in primary GCs. The purpose of this study was to evaluate the mutation and expression of POLB in a larger cohort and to identify possible prognostic roles of the POLB alterations in GC. Primary GC specimens and their matched normal adjacent tissues were collected at the time of surgery. DNA, RNA and protein samples were isolated from GC specimens and cell lines. Mutations were detected by PCR-RFLP/DHPLC and sequencing analysis. POLB gene expression was examined by RT-PCR, tissue microarray, Western blotting and immunofluorescence assays. The function of the mutation was evaluated by chemosensitivity, MTT, Transwell matrigel invasion and host cell reactivation assays. The T889C mutation was detected in 18 (10.17%) of 177 GC patients. And the T889C mutation was associated with POLB overexpression, lymph nodes metastases and poor tumor differentiation. In addition, patients with- the mutation had significantly shorter survival time than those without-, following postoperative chemotherapy. Furthermore, cell lines with T889C mutation in POLB gene were more resistant to the treatment of 5-fluorouracil, cisplatin and epirubicin than those with wild type POLB. Forced expression of POLB gene with T889C mutation resulted in enhanced cell proliferation, invasion and resistance to anticancer drugs, along with increased DNA repair capability. These results suggest that POLB gene with T889C mutation in surgically resected primary gastric tissues may be clinically useful for predicting responsiveness to chemotherapy in patients with GC. The POLB gene alteration may serve as a prognostic biomarker for GC.  相似文献   

6.
Damaged DNA bases are removed from mammalian genomes by base excision repair (BER). Single nucleotide BER requires several enzymatic activities, including DNA polymerase and 5',2'-deoxyribose-5-phosphate lyase. Both activities are intrinsic to four human DNA polymerases whose base substitution error rate during gap-filling DNA synthesis varies by more than 10,000-fold. This suggests that BER fidelity could vary over a wide range in an enzyme dependent manner. To investigate this possibility, here we describe an assay to measure the fidelity of BER reactions reconstituted with purified enzymes. When human uracil DNA glycosylase, AP endonuclease, DNA polymerase beta, and DNA ligase 1 replace uracil opposite template A or G, base substitution error rates are 相似文献   

7.
Studies on origins of DNA replication in mammalian cells have long been hampered by a lack of methods sensitive enough for the localization of such origins in chromosomal DNA. We have employed a new method for mapping origins, based on polymerase chain reaction amplification of nascent strand segments, to examine replication initiated in vivo near the c-myc gene in human cells. Nascent DNA, pulse-labeled in unsynchronized HeLa cells, was size fractionated and purified by immunoprecipitation with anti-bromodeoxyuridine antibodies. Lengths of the nascent strands that allow polymerase chain reaction amplification were determined by hybridization to probes homologous to amplified segments and used to calculate the position of the origin. We found that DNA replication through the c-myc gene initiates in a zone centered approximately 1.5 kilobases upstream of exon I. Replication proceeds bidirectionally from the origin, as indicated by comparison of hybridization patterns for three amplified segments. The initiation zone includes segments of the c-myc locus previously reported to drive autonomous replication of plasmids in human cells.  相似文献   

8.
9.
We have previously demonstrated that the addition of a stoichiometric excess of the beta subunit of Escherichia coli DNA polymerase III holoenzyme to DNA polymerase III or holoenzyme itself can lead to an ATP-independent increase in the processivity of these enzyme forms (Crute, J. J., LaDuca, R. J., Johanson, K. O., McHenry, C. S., and Bambara, R. A. (1983) J. Biol. Chem. 258, 11344-11349). Here, we show that the beta subunit can interact directly with the catalytic core of the holoenzyme, DNA polymerase III, generating a new form of the enzyme with enhanced catalytic and processive capabilities. The addition of saturating levels of the beta subunit to the core DNA polymerase III enzyme results in as much as a 7-fold stimulation of synthetic activity. Two populations of DNA products were generated by the DNA polymerase III X beta enzyme complex. Short products resulting from the addition of 5-10 nucleotides/primer fragment were generated by DNA polymerase III in the presence and absence of added beta subunit. A second population of much longer products was generated only in beta-supplemented DNA polymerase III reactions. The DNA polymerase III-beta reaction was inhibited by single-stranded DNA binding protein and was unaffected by ATP, distinguishing it from the holoenzyme-catalyzed reaction. Complex formation of the DNA polymerase III core enzyme with beta increased the residence time of the enzyme on synthetic DNA templates. Our results demonstrate that the beta stimulation of DNA polymerase III can be attributed to a more efficient and highly processive elongation capability of the DNA polymerase III X beta complex. They also prove that at least part of beta's normal contribution to the DNA polymerase III holoenzyme reaction takes place through interaction with DNA polymerase III core enzyme components to produce the essential complex necessary for efficient elongation in vivo.  相似文献   

10.
Approximately 30% of human tumors characterized to date express DNA polymerase beta (pol β) variant proteins. Two of the polymerase beta cancer-associated variants are sequence-specific mutators, and one of them binds to DNA but has no polymerase activity. The Leu22Pro (L22P) DNA polymerase beta variant was identified in a gastric carcinoma. Leu22 resides within the 8 kDa amino terminal domain of DNA polymerase beta, which exhibits dRP lyase activity. This domain catalyzes the removal of deoxyribose phosphate during short patch base excision repair. We show that this cancer-associated variant has very little dRP lyase activity but retains its polymerase activity. Although residue 22 has no direct contact with the DNA, we report here that the L22P variant has reduced DNA-binding affinity. The L22P variant protein is deficient in base excision repair. Molecular dynamics calculations suggest that alteration of Leu22 to Pro changes the local packing, the loop connecting helices 1 and 2 and the overall juxtaposition of the helices within the N-terminal domain. This in turn affects the shape of the binding pocket that is required for efficient dRP lyase catalysis.  相似文献   

11.
Dalal S  Hile S  Eckert KA  Sun KW  Starcevic D  Sweasy JB 《Biochemistry》2005,44(48):15664-15673
Studies show that 30% of 189 tumors sequenced to date express variants of the polymerase beta (pol beta) protein that are not present in normal tissue. This raises the possibility that variants of pol beta might be linked to the etiology of cancer. Here, we characterize the I260M prostate-cancer-associated variant of pol beta. Ile260 is a key residue of the hydrophobic hinge that is important for the closing of the polymerase. In this study, we demonstrate that the I260M variant is a sequence context-dependent mutator polymerase. Specifically, I260M is a mutator for misalignment-mediated errors in dipyrimidine sequences. I260M is also a low-fidelity polymerase with regard to the induction of transversions within specific sequence contexts. Our results suggest that the hinge influences the geometry of the DNA within the polymerase active site that is important for accurate DNA synthesis. Importantly, characterization of the I260M variant shows that it has a functional phenotype that could be linked to the etiology or malignant progression of human cancer.  相似文献   

12.
Summary We have analyzed the hypervariable locus D17S5 in four well-defined human populations (Kachari of Northeast India; Dogrib Indian of Canada; New Guinea Highlander of Papua New Guinea; and a relatively homogeneous Caucasian population of North German extraction) using both Southern blot analysis and the polymerase chain reaction (PCR) technique to; (1) compare the efficiency and limitation of Southern blotting versus PCR-based techniques in genotyping variable number of tandem repeat loci, and (2) provide allele frequency data at this locus in these four anthropologically defined populations. Preferential PCR amplification of smaller alleles associated with D17S5 was corrected by lowering the DNA template concentration to 200ng, and by reducing the extension time to 2 min. A perfect correspondence was observed between the results from Southern blot and PCR analysis in all but one sample. A very large allele, of approximately 24 to 25 repeat units, detected by Southern blotting, could not be amplified by PCR, resulting in an incorrect genotyping rate of less than 0.5%. Considering the grave consequences of mistyping in forensic and paternity testing, it is suggested that heterozygous controls consisting of large and small alleles should be employed in each PCR experiment, and PCR-generated homozygotes should be confirmed by Southern blotting. Significant variation in the number and frequency of alleles at this locus was observed in the four examined populations. A total of 15 different alleles were detected. The average heterozygosity varied from 54% in the Dogrib to 89% in the Kachari. No heterozygote deficiency was observed at this locus in any of the examined populations.  相似文献   

13.
We have previously identified Id- tumor vaiants that emerge after anti-Id mAb therapy of the murine B cell lymphoma 38C13. This report characterizes the molecular basis for these variants. By using a modification of the polymerase chain reaction (PCR), mu and kappa Ig loci were sequenced from nine Id- variants derived directly by anti-Id immunoselection in vivo. Ig kappa loci sequence analysis was also performed from 10 additional variants amplified directly from tumor cells in vitro without immunoselection. We demonstrate that the molecular mechanism underlying tumor cell escape in this model is the spontaneous emergence of variants that have undergone kappa L chain gene "re-rearrangement" before positive selection by the anti-Id antibody. A second round of re-rearrangement was also demonstrated to occur within primary tumor variants. Re-rearrangement of the 38C13 tumor cell Ig kappa locus is strongly biased toward use of variable kappa genes within the conserved V kappa-Ox1 gene family, although their use is not exclusive. With the use of RNA PCR re-rearrangement was documented to occur in vitro at a frequency of approximately 1.0 x 10(-5)/cell. These findings may have important implications for the application of anti-Id antibodies as a therapeutic approach for human lymphomas and for understanding of the Ig gene rearrangement process.  相似文献   

14.
The cDNA encoding the human polymerase beta from HeLa cells was PCR amplified and cloned, and its nucleotide sequence determined. The DNA sequence is identical to the polymerase beta cDNA sequence from Tera-2 cells. Three expression strategies were employed that were designed to maximize translation initiation of the polymerase beta mRNA in Escherichia coli and all yielded a high level of human polymerase beta. The recombinant protein was purified and its properties were compared with those of the recombinant rat enzyme. The domain structure and kinetic parameters (k(cat) and K(m)) were nearly identical. A mouse IgG monoclonal antibody to the rat enzyme (mAb-10S) was approximately 10-fold less reactive with the human enzyme than with the rat enzyme as determined by ELISA.  相似文献   

15.
The highly polymorphic minisatellites contain a variable number of tandemly repeated (VNTR) DNA sequences. They are extremely useful and informative markers to study genetic variation among human populations. We have analysed the allele frequency distribution at the highly polymorphic apolipoprotein B (Apo B) VNTR locus in order to obtain the population data for the Cukurova region in Turkey by using the polymerase chain reaction and polyacrylamide gel electrophoresis. We observed 10 different alleles and 21 genotypes in a sample of 100 unrelated individuals. The allele frequencies ranged from 0.01 to 0.4, with an expected heterozygosity of 0.69 for the Apo B locus. Alleles 37 (frequency = 0.4) and 35 (frequency = 0.17) were the most common in the Cukurova population. There was a significant deviation from the Hardy-Weinberg equilibrium (HWE) for genotype frequencies (chi2 = 29.12; df = 1; p = 0.000). This study possesses novelty as it is the first DNA polymorphism study conducted at the Cukurova population using an Apo B minisatellite locus.  相似文献   

16.
The DNA of every cell in the human body gets damaged more than 50,000 times a day. The most frequent damages are abasic sites. This kind of damage blocks proceeding DNA synthesis by several DNA polymerases that are involved in DNA replication and repair. The mechanistic basis for the incapability of these DNA polymerases to bypass abasic sites is not clarified. To gain insights into the mechanistic basis, we intended to identify amino acid residues that govern for the pausing of DNA polymerase β when incorporating a nucleotide opposite to abasic sites. Human DNA polymerase β was chosen because it is a well characterized DNA polymerase and serves as model enzyme for studies of DNA polymerase mechanisms. Moreover, it acts as the main gap-filling enzyme in base excision repair, and human tumor studies suggest a link between DNA polymerase β and cancer. In this study we employed high throughput screening of a library of more than 11,000 human DNA polymerase β variants. We identified two mutants that have increased ability to incorporate a nucleotide opposite to an abasic site. We found that the substitutions E232K and T233I promote incorporation opposite the lesion. In addition to this feature, the variants have an increased activity and a lower fidelity when processing nondamaged DNA. The mutations described in this work are located in well characterized regions but have not been reported before. A crystallographic structure of one of the mutants was obtained, providing structural insights.  相似文献   

17.
Base excision repair is one of the major mechanisms by which cells correct damaged DNA. We have developed an in vitro assay for base excision repair which is dependent on a uracil-containing DNA template. In this report, we demonstrate the fractionation of a human cell extract into two required components. One fraction was extensively purified and by several criteria shown to be identical to DNA polymerase beta (Polbeta). Purified, recombinant Polbeta efficiently substituted for this fraction. Escherichia coli PolI, mammalian Poldelta and to a lesser extent Polalpha and epsilon also functioned in this assay. We provide evidence that multiple polymerases function in base excision repair in human cell extracts. A neutralizing antibody to Polbeta, which inhibited repair synthesis catalyzed by pure Polbeta by approximately 90%, only suppressed repair in crude extracts by a maximum of approximately 70%. An inhibitor of Polbeta, ddCTP, decreased base excision repair in crude extracts by approximately 50%, whereas the Polalpha/delta/epsilon inhibitor, aphidicolin, reduced the reaction by approximately 20%. A combination of these chemical inhibitors almost completely abolished repair synthesis. These data suggest that Polbeta is the major base excision repair polymerase in human cells, but that other polymerases also contribute to a significant extent.  相似文献   

18.
Hamid S  Eckert KA 《Biochemistry》2005,44(30):10378-10387
We have examined the mechanism of DNA polymerase beta (pol beta) lesion discrimination using alkylated dNTP versus alkylated DNA template substrates and the pol beta variants R253M and E249K. Both of these amino acid variants are located in the loop region of the palm domain and are known to play a role in pol beta fidelity and discrimination of 3'-azido-3'-deoxythymidine triphosphate substrates. We observed that these variants affect O(6)-methyldeoxyguanosine- (m6G-) modified dNTP discrimination without affecting m6G template translesion synthesis. Under steady-state conditions, the ratio of inherent reactivity values for the m6dGTP substrate relative to the dGTP substrate was greater for both variant polymerases than for wild-type (WT) pol beta. Biochemical assays of translesion synthesis using m6G lesion-containing templates demonstrated no significant differences between the variants and WT. Using N-methyl-N-nitrosourea- (MNU-) modified DNA templates in the HSV-tk in vitro assay, no difference among the enzymes in the frequency of alkylation-induced G to A transition mutations was observed. However, differences among the polymerases in the frequency of alkylation-induced C to A transversions were observed, consistent with a mutator tendency for E249K and an antimutator tendency for R253M. We conclude that a specific interaction at the loop of the palm domain is involved in pol beta discrimination of the m6G lesion when present on the incoming dNTP substrate but not when present in the DNA template. Our data support a role for the flexible loop in pol beta error discrimination.  相似文献   

19.
J B Sweasy  M Chen    L A Loeb 《Journal of bacteriology》1995,177(10):2923-2925
We previously demonstrated that mammalian DNA polymerase beta can substitute for DNA polymerase I of Escherichia coli in DNA replication and in base excision repair. We have now obtained genetic evidence suggesting that DNA polymerase beta can substitute for E. coli DNA polymerase I in the initiation of replication of a plasmid containing a pMB1 origin of DNA replication. Specifically, we demonstrate that a plasmid with a pMB1 origin of replication can be maintained in an E. coli polA mutant in the presence of mammalian DNA polymerase beta. Our results suggest that mammalian DNA polymerase beta can substitute for E. coli DNA polymerase I by initiating DNA replication of this plasmid from the 3' OH terminus of the RNA-DNA hybrid at the origin of replication.  相似文献   

20.
We have developed an argon laser chromosome microdissection technique in conjunction with a polymerase chain reaction (PCR) approach to directly amplify microdissected chromosomes. The single 22-mer primer used in PCR, although unique in sequence (5'-TAGATCTGA-TATCTGAATTCCC-3'), randomly primed and amplified any target DNA. These methods were applied to the distal half of the short arm of human chromosome 4 containing the Huntington disease (HD) locus. Forty-four percent of representative clones from this library identify single-copy DNA sequences. This calculation suggests that the resulting chromosome-specific DNA library contains approximately 600 nonoverlapping sequences with an average size 350 bp at an average spacing of 30 kbp along chromosome 4. This microdissection and PCR cloning procedure is a simple and general approach for constructing a chromosome region-specific DNA library from a single metaphase spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号