首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of PARP-1-expressing cells with the combination of a DNA methylating agent (MMS) and the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN) leads to an ATR/Chk1-dependent S phase checkpoint and cell death by apoptosis. Activation of ATM/Chk2 is involved in sustaining the S phase checkpoint, and double strand break (DSB) accumulation was demonstrated. NBS1, part of the MRN complex that responds to DSBs, is known to modulate ATR- and ATM-dependent checkpoint responses to UV and IR, but a role in the response to PARP inhibition has not been addressed. Here we show that the S phase checkpoint observed 4-8h after MMS+4-AN treatment was absent in cells deficient in NBS1, but was present in NBS1-complemented (i.e., functionally wild-type) cells, indicating a critical role for NBS1 in this checkpoint response. NBS1 was phosphorylated in response to MMS+4-AN treatment, and this was partially ATR- and ATM-dependent, suggesting involvement of both upstream kinases. NBS1 expression had little effect on ATR-mediated phosphorylation of Chk1 and ATM-mediated phosphorylation of Chk2 in response to MMS+4-AN. Phosphorylation of SMC1 was also observed in response to MMS+4-AN treatment. In the absence of ATM and NBS1, phosphorylation of SMC1 was weak, especially at early times after MMS+4-AN treatment. In the absence of ATR activation, reduced SMC1 phosphorylation was seen over a 24h time course. These results suggested that both ATR and ATM phosphorylate SMC1 in response to MMS+4-AN and that this phosphorylation is enhanced by phospho-NBS1. The loss of the MMS+4-AN-induced S phase checkpoint in NBS1-deficient cells may be due to a reduced cellular level of the critical downstream effector, phospho-SMC1.  相似文献   

2.
Mouse fibroblasts, deficient in DNA polymerase beta, are hypersensitive to monofunctional DNA methylating agents such as methyl methanesulfonate (MMS). Both wild-type and, in particular, repair-deficient DNA polymerase beta null cells are highly sensitized to the cytotoxic effects of MMS by 4-amino-1,8-naphthalimide (4-AN), an inhibitor of poly(ADP-ribose) polymerase (PARP) activity. Experiments with synchronized cells suggest that exposure during S-phase of the cell cycle is required for the 4-AN effect. 4-AN elicits a similar extreme sensitization to the thymidine analog, 5-hydroxymethyl-2'-deoxyuridine, implicating the requirement for an intermediate of DNA repair. In PARP-1-expressing fibroblasts treated with a combination of MMS and 4-AN, a complete inhibition of DNA synthesis is apparent after 4 h, and by 24 h, all cells are arrested in S-phase of the cell cycle. Continuous incubation with 4-AN is required to maintain the cell cycle arrest. Caffeine, an inhibitor of the upstream checkpoint kinases ATM (ataxia telangiectasia-mutated) and ATR (ATM and Rad3-related), has no effect on the early inhibition of DNA synthesis, but cells are no longer able to maintain the block after 8 h. Instead, the addition of caffeine leads to arrest of cells in G(2)/M rather than S-phase after 24 h. Analysis of signaling pathways in cell extracts reveals an activation of Chk1 after treatment with MMS and 4-AN, which can be suppressed by caffeine. Our results suggest that inhibition of PARP activity results in sensitization to MMS through maintenance of an ATR and Chk1-dependent S-phase checkpoint.  相似文献   

3.
Human fibroblasts, capable of expressing a kinase-dead form of ATR (ATRkd), can be sensitized to the cytotoxic effects of methyl methanesulfonate (MMS) by the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN). The combination of MMS+4-AN results in accumulation of cells in S-phase of the cell cycle and activation of Chk1. Inhibition of ATR activity by expression of ATRkd suppresses the S-phase accumulation and partially reverses the Chk1 phosphorylation. The results confirm involvement of an ATR-mediated damage response pathway in the MMS+4-AN-induced S-phase cell cycle checkpoint in human fibroblasts. Consistent with this hypothesis, the inhibitors caffeine and UCN-01 also abrogate the ATR- and Chk1-mediated delay in progression through S-phase. In the absence of ATR-mediated signaling, MMS+4-AN exposure results in a G(2)/M arrest, rather than an S-phase checkpoint. Thus, whereas ATR mediates the S-phase response, it is not critical for arrest of cells in G(2)/M.  相似文献   

4.
The combination of poly(ADP-ribose)polymerase (PARP) inhibitors and alkylating agents is currently being investigated in cancer therapy clinical trials. However, the DNA lesions producing the synergistic cell killing effect in tumors are not fully understood. Treatment of human and mouse fibroblasts with the monofunctional DNA methylating agent methyl methanesulfonate (MMS) in the presence of a PARP inhibitor has been shown to trigger a cell cycle checkpoint response. Among other changes, this DNA damage response to combination treatment includes activation of ATM/Chk2 and phosphorylation of histone H2A.X. These changes are consistent with DNA double-strand break (DSB) formation during the response, but the measurement of DSBs has not been addressed. Such DSB evaluation is important in understanding this DNA damage response because events other than DSB formation are known to lead to ATM/Chk2 activation and H2A.X phosphorylation. Here, we examined the structural integrity of genomic DNA after the combined treatment of cells with MMS and a PARP inhibitor, i.e., exposure to a sub-lethal dose of MMS in the presence of the PARP inhibitor 4-amino-1,8-napthalimide (4-AN). We used pulsed field gel electrophoresis (PFGE) for measurement of DSBs in both human and mouse embryonic fibroblasts, and flow cytometry to follow the phosphorylated form of H2A.X (γ-H2A.X). The results indicate that DSBs are formed with the combination treatment, but not following treatment with either agent alone. Our data also show that formation of γ-H2A.X correlates with PARP-1-expressing cells in S-phase of the cell cycle. The observations support the model that persistence of PARP-1 at base excision repair intermediates, as cells move into S-phase, leads to DSBs and the attendant checkpoint responses.  相似文献   

5.
Horton JK  Stefanick DF  Wilson SH 《DNA Repair》2005,4(10):1111-1120
The activity of poly(ADP-ribose) polymerase (PARP) is highly stimulated following DNA damage resulting in formation of DNA nicks and strand breaks. This leads to modification of numerous proteins, including itself, using NAD(+) as substrate and to exhaustion of intracellular ATP. A highly cytotoxic concentration of the DNA methylating agent methyl methanesulfonate (MMS) results in cellular ATP depletion and cell death primarily by necrosis in both wild-type and DNA polymerase beta null mouse fibroblasts. The loss of ATP can be prevented by the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN), and now cells die by an energy-dependent apoptotic pathway. We find that inhibition of PARP activity transforms a sub-lethal exposure to MMS into a highly cytotoxic event. Under this condition, ATP is not depleted and cell death is by apoptosis. The caspase inhibitor, Z-VAD, shifts the mechanism of cell death to necrosis indicating a caspase-dependent component of the apoptotic cell death. Co-exposure to the Chk1 inhibitor UCN-01 also produces a decrease in apoptotic cell death, but now there is an increase in viable cells and an enhancement in long-term survival. Taken together, our results suggest that inhibition of PARP activity, induced as a result of low dose MMS exposure, signals via a Chk1-dependent pathway for cell death by apoptosis.  相似文献   

6.
DNA damage during the cell division cycle can activate ATM/ATR and their downstream kinases that are involved in the checkpoint pathway, and cell growth is halted until damage is repaired. As a result of DNA damage induced in mitotic cells by doxorubicin treatment, cells accumulate in a G2-like phase, not in mitosis. Under these conditions, two mitosis-specific kinases, Cdk1 and Plk1, are inhibited by inhibitory phosphorylation and dephosphorylation, respectively. G2-specific phosphorylation of Cdc25 was increased during incubation after mitotic DNA damage. Inhibition of Plk1 through dephosphorylation was dependent on ATM/Chk1 activity. Depleted expression of ATM and Chk1 was achieved using small hairpin RNA (shRNA) plasmid constructs. In this condition, damaged mitotic cells did not accumulated in a G2-like stage, and entered into G1 phase without delay. Protein phosphatase 2A was responsible for dephosphorylation of mitotic Plk1 in response to DNA damage. In knockdown of PP2A catalytic subunits, Plk1 was not dephosphorylated, but rather degraded in response to DNA damage, and cells did not accumulate in G2-like phase. The effect of ATM/Chk1 inhibition was counteracted by overexpression of PP2A, indicated that PP2A may function as a downstream target of ATM/Chk1 at a mitotic DNA damage checkpoint, or may have a dominant effect on ATM/Chk1 function at this checkpoint. Finally, we have shown that negative regulation of Plk1 by dephosphorylation is important to cell accumulation in G2-like phase at the mitotic DNA damage checkpoint, and that this ATM/Chk1/PP2A pathway independent on p53 is a novel mechanism of cellular response to mitotic DNA damage.  相似文献   

7.
The ataxia telangiectasia mutated (ATM) and ATR (ATM and Rad3-related) protein kinases exert cell cycle delay, in part, by phosphorylating Checkpoint kinase (Chk) 1, Chk2, and p53. It is well established that ATR is activated following UV light-induced DNA damage such as pyrimidine dimers and the 6-(1,2)-dihydro-2-oxo-4-pyrimidinyl-5-methyl-2,4-(1H,3H)-pyrimidinediones, whereas ATM is activated in response to double strand DNA breaks. Here we clarify the activation of these kinases in cells exposed to IR, UV, and hyperoxia, a condition of chronic oxidative stress resulting in clastogenic DNA damage. Phosphorylation on Chk1(Ser-345), Chk2(Thr-68), and p53(Ser-15) following oxidative damage by IR involved both ATM and ATR. In response to ultraviolet radiation-induced stalled replication forks, phosphorylation on Chk1 and p53 required ATR, whereas Chk2 required ATM. Cells exposed to hyperoxia exhibited growth delay in G1, S, and G2 that was disrupted by wortmannin. Consistent with ATM or ATR activation, hyperoxia induced wortmannin-sensitive phosphorylation of Chk1, Chk2, and p53. By using ATM- and ATR-defective cells, phosphorylation on Chk1, Chk2, and p53 was found to be ATM-dependent, whereas ATR also contributed to Chk1 phosphorylation. These data reveal activated ATM and ATR exhibit selective substrate specificity in response to different genotoxic agents.  相似文献   

8.
In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NBS1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G(2)/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G(2) checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G(2)/M checkpoint.  相似文献   

9.
The checkpoint kinase Chk1 is an established transducer of ATR- and ATM-dependent signalling in response to DNA damage. In addition to its nuclear localization, Chk1 localizes to interphase centrosomes and thereby negatively regulates entry into mitosis by preventing premature activation of cyclin B-Cdk1 during unperturbed cell cycles. Here, we demonstrate that DNA damage caused by ultraviolet irradiation or hydroxyurea treatment leads to centrosomal accumulation of endogenous Chk1 in normal human BJ fibroblasts and in ATR- or ATM-deficient fibroblasts. Chemical inhibition of ATR/ATM by caffeine led to enhanced centrosomal Chk1 deposition associated with nuclear Chk1 depletion. In contrast to normal or ATM-deficient fibroblasts, genetically ATR-deficient Seckel-fibroblasts showed detectable constitutive centrosomal accumulation of Chk1 even in the absence of exogenous insults. After DNA damage, the centrosomal fraction of Chk1 was found to be phosphorylated at ATR/ATM phosphorylation sites. Forced immobilization of kinase-inactive but not wild-type Chk1 to centrosomes resulted in a G2/M checkpoint defect. Finally, both DNA damage, and forced centrosomal expression of Chk1 in the absence of genotoxic treatments, induced centrosome amplification in a subset of cells, a phenomenon which could be suppressed by inhibition of ATM/ATR-mediated signaling. Taken together, our results suggest that accumulation of phosphorylated Chk1 at centrosomes constitutes an additional element in the DNA damage response. Centrosomal Chk1 induces G2/M cell cycle arrest and may evoke centrosome amplification, the latter possibly providing a backup mechanism for elimination of cells with impaired DNA damage checkpoints operating earlier during the cell cycle.  相似文献   

10.
Chk1 phosphorylation by the PI3-like kinases ATR and ATM is critical for its activation and its role in prevention of premature mitotic entry in response to DNA damage or stalled replication. The breast and ovarian tumor suppressor, BRCA1, is among several checkpoint mediators that are required for Chk1 activation by ATM and ATR. Previously we showed that BRCA1 is necessary for Chk1 phosphorylation and activation following ionizing radiation. BRCA1 has been implicated in S-phase checkpoint control yet its mechanism of action is not well characterized. Here we report that BRCA1 is critical for Chk1 phosphorylation in response to inhibition of replication by either cisplatin or hydroxyurea. While Chk1 phosphorylation of S317 is fully dependent on BRCA1, additional proteins may mediate S345 phosphorylation at later time points. In addition, we show that a subset of phosphorylated Chk1 is released from the chromatin in a BRCA1-dependent manner which may lead to the phosphorylation of Chk1 substrate, Cdc25C, on S216 and to S-phase checkpoint activation. Inhibition of Chk1 kinase by UCN-01 or expression of Chk1 phosphorylation mutants in which the serine residues were substituted with alanine residues abrogates BRCA1-dependent cell cycle arrest in response replication inhibition. These data reveal that BRCA1 facilitates Chk1 phosphorylation and its partial chromatin dissociation following replication inhibition that is likely to be required for S-phase checkpoint signaling.  相似文献   

11.
Chk2 kinase is activated by DNA damage to regulate cell cycle arrest, DNA repair, and apoptosis. Phosphorylation of Chk2 in vivo by ataxia telangiectasia-mutated (ATM) on threonine 68 (T68) initiates a phosphorylation cascade that promotes the full activity of Chk2. We identified three serine residues (S19, S33, and S35) on Chk2 that became phosphorylated in vivo rapidly and exclusively in response to ionizing radiation (IR)-induced DNA double-strand breaks in an ATM- and Nbs1-dependent but ataxia telangiectasia- and Rad3-related-independent manner. Phosphorylation of these residues, restricted to the G(1) phase of the cell cycle, was induced by a higher dose of IR (>1 Gy) than that required for phosphorylation of T68 (0.25 Gy) and declined by 45 to 90 min, concomitant with a rise in Chk2 autophosphorylation. Compared to the wild-type form, Chk2 with alanine substitutions at S19, S33, and S35 (Chk2(S3A)) showed impaired dimerization, defective auto- and trans-phosphorylation activities, and reduced ability to promote degradation of Hdmx, a phosphorylation target of Chk2 and regulator of p53 activity. Besides, Chk2(S3A) failed to inhibit cell growth and, in response to IR, to arrest G(1)/S progression. These findings underscore the critical roles of S19, S33, and S35 and argue that these phosphoresidues may serve to fine-tune the ATM-dependent response of Chk2 to increasing amounts of DNA damage.  相似文献   

12.
Kennedy DR  Beerman TA 《Biochemistry》2006,45(11):3747-3754
Cells lacking the protein kinase ataxia telangiectasia mutated (ATM) have defective responses to DNA double-strand breaks (DSBs), including an inability to activate damage response proteins such as p53. However, we previously showed that cells lacking ATM robustly activate p53 in response to DNA strand breaks induced by the radiomimetic enediyne C-1027. To gain insight into the nature of C-1027-induced ATM-independent damage responses to DNA DSBs, we further examined the molecular mechanisms underlying the cellular response to this unique radiomimetic agent. Like ionizing radiation (IR) and other radiomimetics, breaks induced by C-1027 efficiently activate ATM by phosphorylation at Ser1981, yet unlike other radiomimetics and IR, DNA breaks induced by C-1027 result in normal phosphorylation of p53 and the cell cycle checkpoint kinases (Chk1 and Chk2) in the absence of ATM. In the presence of ATM, but under ATM and Rad3-related kinase (ATR) deficient conditions, C-1027 treatment resulted in a decrease in the level of Chk1 phosphorylation but not in the level of p53 and Chk2 phosphorylation. Only when cells were deficient in both ATM and ATR was there a reduction in the level of phosphorylation of each of these DNA damage response proteins. This reduction was also accompanied by an increased level of cell death in comparison to that of wild-type cells or cells lacking either ATM or ATR. Our findings demonstrate a unique cellular response to C-1027-induced DNA DSBs in that DNA damage response proteins are unaffected by the absence of ATM, as long as ATR is present.  相似文献   

13.
Caffeine and human DNA metabolism: the magic and the mystery   总被引:7,自引:0,他引:7  
The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21(Cip1/Waf1) post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase eta, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol eta protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine.  相似文献   

14.
Poly(ADP-ribose) polymerase 1 (PARP-1) catalyzes a post-translational modification that plays a crucial role in coordinating the signalling cascade in response to stress stimuli. During the DNA damage response, phosphorylation by ataxia telangiectasia mutated (ATM) kinase and checkpoint kinase Chk2 induces the stabilization of Che-1 protein, which is critical for the maintenance of G2/M arrest. In this study we showed that poly(ADP-ribosyl)ation, beyond phosphorylation, is involved in the regulation of Che-1 stabilization following DNA damage. We demonstrated that Che-1 accumulation upon doxorubicin treatment is reduced after the inhibition of PARP activity in HCT116 cells and in PARP-1 knock-out or silenced cells. In accordance, impairment in Che-1 accumulation by PARP inhibition reduced Che-1 occupancy at p21 promoter and affected the expression of the corresponding gene. Epistasis experiments showed that the effect of poly(ADP-ribosyl)ation on Che-1 stabilization is independent from ATM kinase activity. Indeed we demonstrated that Che-1 protein co-immunoprecipitates with ADP-ribose polymers and that PARP-1 directly interacts with Che-1, promoting its modification in vitro and in vivo.  相似文献   

15.
The tumor suppressor gene Chk2 encodes a serine/threonine kinase that signals DNA damage to cell cycle checkpoints. In response to ionizing radiation, Chk2 is phosphorylated on threonine 68 (T68) by ataxia-telangiectasia mutated (ATM) protein leading to its activation. We have previously shown that polo-like kinase 3 (Plk3), a protein involved in DNA damage checkpoint and M-phase functions, interacts with and phosphorylates Chk2. When Chk2 was immunoprecipitated from Daudi cells (Plk3-deficient), it had weak kinase activity towards Cdc25C compared with Chk2 derived from T47D cells (Plk3-expressing cells). This activity was restored by addition of recombinant Plk3 in a dose-dependent manner. Plk3 phosphorylates Chk2 at two residues, serine 62 (S62) and serine 73 (S73) in vitro, and this phosphorylation facilitates subsequent phosphorylation of Chk2 on T68 by ATM in response to DNA damage. When the Chk2 mutant construct GFP-Chk2 S73A (serine 73 mutated to alanine) is transfected into cells, it no longer associates with a large complex in vivo, and manifests a significant reduction in kinase activity. It is also inefficiently activated by ATM by phosphorylation at T68 and, in turn, is unable to phosphorylate the Cdc25C peptide 200-256, which contains the inhibitory S216 target phosphorylation residue. As a consequence, tyrosine 15 (Y15) on Cdc2 remains hypophosphorylated, and there is a loss of the G2/M checkpoint. These data describe a functional role for Plk3 in a pathway linking ATM, Plk3, Chk2, Cdc25C and Cdc2 in cellular response to DNA damage.  相似文献   

16.
In response to ionizing radiation, checkpoint kinase 2 (Chk2) is activated in an ataxia telangiectasia mutation-dependent manner and induces either cell cycle arrest or apoptosis. Chk2 is also autophosphorylated following DNA damage. It is proposed that autophosphorylation of Chk2 may contribute to Chk2 activation. To fully understand the regulation of Chk2, we mapped an in vitro Chk2 autophosphorylation site at C-terminal serine 516 site (Ser-516). Ser-516 of Chk2 is phosphorylated following radiation in vivo, and this phosphorylation depends on the kinase activity of Chk2. Mutation of this autophosphorylation site (S516A) results in reduced Chk2 kinase activity, suggesting that Chk2 autophosphorylation is required for full kinase activation following DNA damage. Moreover, the S516A mutant of Chk2 is defective in ionizing radiation-induced apoptosis, suggesting that Chk2 autophosphorylation is critical for Chk2 function following DNA damage.  相似文献   

17.
18.
The DNA damage checkpoint, when activated in response to genotoxic damage during S phase, arrests cells in G2 phase of the cell cycle. ATM, ATR, Chk1 and Chk2 kinases are the main effectors of this checkpoint pathway. The checkpoint kinases prevent the onset of mitosis by eliciting well characterized inhibitory phosphorylation of Cdk1. Since Cdk1 is required for the recruitment of condensin, it is thought that upon DNA damage the checkpoint also indirectly blocks chromosome condensation via Cdk1 inhibition. Here we report that the G2 damage checkpoint prevents stable recruitment of the chromosome-packaging-machinery components condensin complex I and II onto the chromatin even in the presence of an active Cdk1. DNA damage-induced inhibition of condensin subunit recruitment is mediated specifically by the Chk2 kinase, implying that the condensin complexes are targeted by the checkpoint in response to DNA damage, independently of Cdk1 inactivation. Thus, the G2 checkpoint directly prevents stable recruitment of condensin complexes to actively prevent chromosome compaction during G2 arrest, presumably to ensure efficient repair of the genomic damage.  相似文献   

19.
DNA damage triggers multiple checkpoint pathways to arrest cell cycle progression. Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. In addition to Plk1 functions in cell cycle, Plk1 is involved in DNA damage check-point in G2 phase. Normally, ataxia telangiectasia-mutated kinase (ATM) is a key enzyme involved in G2 phase cell cycle arrest following DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in a ATM/ATR-dependent manner. However, it is still unclear how Plk1 is regulated in response to DNA damage in mitosis in which Plk1 is already activated. Here, we show that treatment of mitotic cells with doxorubicin and gamma-irradiation inhibits Plk1 activity through dephosphorylation of Plk1, and cells were arrested in G2 phase. Treatments of the phosphatase inhibitors and siRNA experiments suggested that PP2A pathway might be involved in regulating mitotic Plk1 activity in mitotic DNA damage. Finally, we propose a novel pathway, which is connected between ATM/ATR/Chk and protein phosphatase-Plk1 in DNA damage response in mitosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号