首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The iron-dependent regulator (IdeR) protein in Mycobacterium tuberculosis, and its better characterized homologue, the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae, are iron-dependent regulatory proteins that control gene expression in response to iron availability in bacteria. IdeR regulates several genes required for iron uptake and storage including those involved in the synthesis of transition metal chelators called siderophores that are linked to the M. tuberculosis virulence. In this study, the metal ion and binding affinities for IdeR binding to an fxbA operator duplex DNA were estimated using fluorescence assays. The Fe(2+), Co(2+), and Ni(2+) affinities of the two metal ion binding sites in IdeR that are involved in the activation of the regulator DNA binding process in vitro were independently estimated. Binding to the two metal ion binding sites is apparently cooperative and the two affinities differ significantly. Occupation of the first metal ion binding site causes dimerization of IdeR, and the metal ion affinity is about 4 microM for Ni(2+) and much less for Fe(2+) and Co(2+). Binding of the second metal ion fully activates IdeR for binding to the fxbA operator. The equilibrium metal ion dissociation constants for IdeR-fxbA operator binding are approximately 9 microM for Fe(2+), 13 microM for Ni(2+), and 23 microM for Co(2+). Interestingly, the natural IdeR cofactor, Fe(2+), shows high affinities toward both binding sites. These results provide insight into the possible roles for each metal binding site in IdeR activation.  相似文献   

4.
5.
6.
7.
The diphtheria toxin repressor (DtxR) is an Fe2+-activated protein with sequence-specific DNA-binding activity for the diphtheria toxin (tox) operator. Under high-iron conditions in Corynebacterium diphtheriae, DtxR represses toxin and siderophore biosynthesis as well as iron uptake. DtxR and a mutant repressor with His–47 substituted for Arg–47, designated DtxR-R47H, were purified and compared. Six different divalent cations (Cd2+, Co2+, Fe2+, Mn2+, Ni2+, and Zn2+) activated the sequence-specific DNA-binding activity of DtxR and enabled it to protect the fox operator from DNase I digestion, but Cu2+ failed to activate DtxR. Hydroxyl radical footprinting experiments indicated that DtxR binds symmetrically about the dyad axis of the tox operator. Methylation protection experiments demonstrated that DtxR binding alters the susceptibility to methylation of three G residues within the AT-rich tox operator. These findings suggest that two or more monomers of DtxR are involved in binding to the tox operator, with symmetrical DNA-protein interactions occurring at each end of the palindromic operator. In this regard, DtxR resembles several other well-characterized prokaryotic repressor proteins but differs dramatically from the Fe2+-activated ferric uptake repressor protein (Fur) of Escherichia coli. The concentration of Co2+ required to activate DtxR-R47H was at least 10-foid greater than that needed to activate DtxR, but the sequence-specific DNA binding of activated DtxR-R47H was indistinguishable from that of wild-type DtxR. The markedly deficient repressor activity of DtxR-R47H is consistent with a significant decrease in its binding activity for divalent cations.  相似文献   

8.
Diphtheria toxin repressor (DtxR) regulates the expression of iron-sensitive genes in Corynebacterium diphtheriae, including the diphtheria toxin gene. DtxR contains an N-terminal metal- and DNA-binding domain that is connected by a proline-rich flexible peptide segment (Pr) to a C-terminal src homology 3 (SH3)-like domain. We determined the solution structure of the intramolecular complex formed between the proline-rich segment and the SH3-like domain by use of NMR spectroscopy. The structure of the intramolecularly bound Pr segment differs from that seen in eukaryotic prolylpeptide-SH3 domain complexes. The prolylpeptide ligand is bound by the SH3-like domain in a deep crevice lined by aliphatic amino acid residues and passes through the binding site twice but does not adopt a polyprolyl type-II helix. NMR studies indicate that this intramolecular complex is present in the apo-state of the repressor. Isothermal equilibrium denaturation studies show that intramolecular complex formation contributes to the stability of the apo-repressor. The binding affinity of synthetic peptides to the SH3-like domain was determined using isothermal titration calorimetry. From the structure and the binding energies, we calculated the enhancement in binding energy for the intramolecular reaction and compared it to the energetics of dimerization. Together, the structural and biophysical studies suggest that the proline-rich peptide segment of DtxR functions as a switch that modulates the activation of repressor activity.  相似文献   

9.
10.
The metal-ion-activated diphtheria toxin repressor (DtxR) is responsible for the regulation of virulence and other genes in Corynebacterium diphtheriae. A single point mutation in DtxR, DtxR(E175K), causes this mutant repressor to have a hyperactive phenotype. Mice infected with Mycobacterium tuberculosis transformed with plasmids carrying this mutant gene show reduced signs of the tuberculosis infection. Corynebacterial DtxR is able to complement mycobacterial IdeR and vice versa. To date, an explanation for the hyperactivity of DtxR(E175K) has remained elusive. In an attempt to address this issue, we have solved the first crystal structure of DtxR(E175K) and characterized this mutant using circular dichroism, isothermal titration calorimetry, and other biochemical techniques. The results show that although DtxR(E175K) and the wild type have similar secondary structures, DtxR(E175K) gains additional thermostability upon activation with metal ions, which may lead to this mutant requiring a lower concentration of metal ions to reach the same levels of thermostability as the wild-type protein. The E175K mutation causes binding site 1 to retain metal ion bound at all times, which can only be removed by incubation with an ion chelator. The crystal structure of DtxR(E175K) shows an empty binding site 2 without evidence of oxidation of Cys102. The association constant for this low-affinity binding site of DtxR(E175K) obtained from calorimetric titration with Ni(II) is Ka = 7.6 ± 0.5 × 104, which is very similar to the reported value for the wild-type repressor, Ka = 6.3 × 104. Both the wild type and DtxR(E175K) require the same amount of metal ion to produce a shift in the electrophoretic mobility shift assay, but unlike the wild type, DtxR(E175K) binding to its cognate DNA [tox promoter-operator (toxPO)] does not require metal-ion supplementation in the running buffer. In the timescale of these experiments, the Mn(II)-DtxR(E175K)-toxPO complex is insensitive to changes in the environmental cation concentrations. In addition to Mn(II), Ni(II), Co(II), Cd(II), and Zn(II) are able to sustain the hyperactive phenotype. These results demonstrate a prominent role of binding site 1 in the activation of DtxR and support the hypothesis that DtxR(E175K) attenuates the expression of virulence due to the decreased ability of the Me(II)-DtxR(E175K)-toxPO complex to dissociate at low concentrations of metal ions.  相似文献   

11.
12.
The diphtheria toxin repressor (DtxR) is a transition metal ion-activated repressor that acts as a global regulatory element in the control of iron-sensitive genes in Corynebacterium diphtheriae. We recently described (L. Sun, J. C. vanderSpek, and J. R. Murphy, Proc. Natl. Acad. Sci. USA 95:14985-14990, 1998) the isolation and in vivo characterization of a hyperactive mutant of DtxR, DtxR(E175K), that appeared to be constitutively active. We demonstrate here that while DtxR(E175K) remains active in vivo in the presence of 300 micro M 2,2'dipyridyl, the purified repressor is, in fact, dependent upon low levels of transition metal ion to transit from the inactive apo form to the active metal ion-bound form of the repressor. Binding studies using 8-anilino-1-naphthalenesulfonic acid suggest that the E175K mutation stabilizes an intermediate of the molten-globule form of the repressor, increasing exposure of hydrophobic residues to solvent. We demonstrate that the hyperactive DtxR(E175K) phenotype is dependent upon an intact ancillary metal ion-binding site (site 1) of the repressor. These observations support the hypothesis that metal ion binding in the ancillary site facilitates the conversion of the inactive apo-repressor to its active, operator-binding conformation. Furthermore, these results support the hypothesis that the C-terminal src homology 3-like domain of DtxR plays an active role in the modulation of repressor activity.  相似文献   

13.
14.
15.
16.
17.
18.
19.
C C Lee  E L Beall    D C Rio 《The EMBO journal》1998,17(14):4166-4174
P elements are a family of mobile DNA elements found in Drosophila. P-element transposition is tightly regulated, and P-element-encoded repressor proteins are responsible for inhibiting transposition in vivo. To investigate the molecular mechanisms by which one of these repressors, the KP protein, inhibits transposition, a variety of mutant KP proteins were prepared and tested for their biochemical activities. The repressor activities of the wild-type and mutant KP proteins were tested in vitro using several different assays for P-element transposase activity. These studies indicate that the site-specific DNA-binding activity of the KP protein is essential for repressing transposase activity. The DNA-binding domain of the KP repressor protein is also shared with the transposase protein and resides in the N-terminal 88 amino acids. Within this region, there is a C2HC putative metal-binding motif that is required for site-specific DNA binding. In vitro the KP protein inhibits transposition by competing with the transposase enzyme for DNA-binding sites near the P-element termini.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号