首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The glycerol teichoic acid of walls of Staphylococcus lactis I3   总被引:13,自引:10,他引:3  
1. The teichoic acid from walls of Staphylococcus lactis I3 was isolated by extraction with trichloroacetic acid and shown to contain glycerol, N-acetylglucosamine, phosphate and d-alanine in the molecular proportions 1:1:2:1. The alanine is attached to the polymer through ester linkages. 2. Hydrolysis with acid gave alanine, glucosamine and glycerol diphosphates. Under mild acid conditions a repeating unit was produced; this consists of glycerol diphosphate joined through a phosphodiester group to N-acetylglucosamine. 3. Hydrolysis with alkali gave glycerol diphosphates, saccharinic acid and two phosphodiesters containing glucosamine whose structures were elucidated; these both contain glucosamine 1-phosphate, and N-acetylglucosamine 1-phosphate was isolated by a degradative procedure. 4. The unusual properties of the teichoic acid are explained by a polymeric structure in which N-acetylglucosamine 1-phosphate is attached through its phosphate to glycerol phosphate. 5. The biosynthetic implications of this structure are discussed.  相似文献   

2.
The membrane teichoic acid of Staphylococcus lactis I3   总被引:5,自引:3,他引:2  
1. Teichoic acid was isolated by extraction with trichloroacetic acid of the membrane fraction of disrupted cells of Staphylococcus lactis I3. 2. The purified material contains glycerol, phosphate and alanine, but little or no sugar or amino sugar. 3. A study of the products of hydrolysis with acid and alkali established that the membrane teichoic acid is a (1-->3)-linked poly(glycerol phosphate) that differs in structure from the glycerol teichoic acid in the wall of this organism. 4. The alanine ester residues show the characteristic high lability to alkali and are thus distinguishable from the more stable alanine ester residues of the wall teichoic acid. 5. The significance of these structural features and the possible function of teichoic acids are discussed.  相似文献   

3.
Antigen a5 was isolated from strain 830 of Staphylococcus aureus by autolysis in phosphate buffer followed by alcohol precipitation. Purification was principally achieved by affinity chromatography on wheat germ agglutinin ultrogel and on anti-S. aureus teichoic acid immunosorbent. The a5 antigen was weakly immunogenic in rabbits. Chemical analysis showed that a5 is a teichoic acid composed of ribitol phosphate, N-acetylglucosamine and alanine. It has similar physico-chemical properties to the wall beta-N-acetylglucosamine ribitol teichoic acid of S. aureus but is serologically distinct.  相似文献   

4.
1. A glycerol teichoic acid has been extracted from cell walls of Bacillus stearothermophilus B65 and its structure examined. 2. Trichloroacetic acid-extractable teichoic acid accounted for 68% of the total cell-wall phosphorus and residual material could be hydrolysed to a mixture of products including those characteristic of glycerol teichoic acids. 3. The extracted polymer is composed of glycerol, phosphoric acid, d-glucose and d-alanine. 4. Hydrolysis of the polymer with alkali gave glycerol, 1-O-alpha-d-glucopyranosylglycerol and its monophosphates, glycerol mono- and di-phosphate, as well as traces of a glucosyldiglycerol triphosphate and a glucosylglycerol diphosphate. 5. The teichoic acid is a polymer of 18 or 19 glycerol phosphate units having alpha-d-glucopyranosyl residues attached to position 1 of 14 or 15 of the glycerol residues. 6. The glycerol residues are joined by phosphodiester linkages involving positions 2 and 3 in each glycerol. 7. d-Alanine is in ester linkage to the hydroxyl group at position 6 of approximately half of the glucose residues. 8. One in every 13 or 12 polymer molecules bears a phosphomonoester group on position 3 of a glucose residue, the possible significance of which in linkage of the polymer to other wall constituents is discussed.  相似文献   

5.
Preparations of membrane plus wall derived from Bacillus subtilis W23 were used to study the in vitro synthesis of peptidoglycan and teichoic acid and their linkage to the preexisting cell wall. The teichoic acid synthesis showed an ordered requirement for the incorporation of N-acetylglucosamine from uridine 5'-diphosphate (UDP)-N-acetylglucosamine followed by addition of glycerol phosphate from cytidine 5'-diphosphate (CDP)-glycerol and finally by addition of ribitol phosphate from CDP-ribitol. UDP-N-acetylglucosamine was not only required for the synthesis of the teichoic acid, but N-acetylglucosamine residues formed an integral part of the linkage unit attaching polyribitol phosphate to the cell wall. Synthesis of the teichoic acid was exquisitely sensitive to the antibiotic tunicamycin, and this was shown to be due to the inhibition of incorporation of N-acetylglucosamine units from UDP-N-acetylglucosamine.  相似文献   

6.
Staphylococcus aureus antigen h2, one of the few heat-stable type antigens of this bacteria, has been extracted from bacteria by autolysis and purified by alcohol precipitation, ion exchange chromatography, and gel filtration. Purified h2 is a precipitating antigen, reacting neither with antisera against α and β ribitol teichoic acids, nor with antisera against Staphylococcal lipoteichoic acid. Infrared spectrometry and chemical analysis reveal a teichoic acidlike composition with glycerol, phosphorus, N-acetylated glucosamine, and alanine as major constituents. These findings confirm the validity of the Oeding-Haukenes scheme of serotyping.  相似文献   

7.
N Kojima  Y Araki    E Ito 《Journal of bacteriology》1985,161(1):299-306
The structure of the linkage regions between ribitol teichoic acids and peptidoglycan in the cell walls of Staphylococcus aureus H and 209P and Bacillus subtilis W23 and AHU 1390 was studied. Teichoic acid-linked saccharide preparations obtained from the cell walls by heating at pH 2.5 contained mannosamine and glycerol in small amounts. On mild alkali treatment, each teichoic acid-linked saccharide preparation was split into a disaccharide identified as N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and the ribitol teichoic acid moiety that contained glycerol residues. The Smith degradation of reduced samples of the teichoic acid-linked saccharide preparations from S. aureus and B. subtilis gave fragments characterized as 1,2-ethylenediol phosphate-(glycerolphosphate)3-N-acetylmannosaminyl beta(1----4)N- -acetylxylosaminitol and 1,2-ethylenediolphosphate-(glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylxylosaminitol, respectively. The binding of the disaccharide unit to peptidoglycan was confirmed by the analysis of linkage-unit-bound glycopeptides obtained from NaIO4 oxidation of teichoic acid-glycopeptide complexes. Mild alkali treatment of the linkage-unit-bound glycopeptides yielded disaccharide-linked glycopeptides, which gave the disaccharide and phosphorylated glycopeptides on mild acid treatment. Thus, it is concluded that the ribitol teichoic acid chains in the cell walls of the strains of S. aureus and B. subtilis are linked to peptidoglycan through linkage units, (glycerol phosphate)3-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and (glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine, respectively.  相似文献   

8.
Cell walls were isolated from cells of Bacillus subtilis strain Marburg during synchronous outgrowth of spores, during the two synchronous cell divisions which followed, and at various times during exponential and early stationary growth. The amounts of teichoic acid and peptidoglycan components were determined in each cell wall preparation. The peptidoglycan is composed of hexosamine, alanine, diaminopimelic acid, and glutamic acid. The ratio of these was relatively constant in the cell walls at each stage of growth. The teichoic acid is composed of glycerol, phosphate, glucose, and ester-linked alanine. With the exception of glucose and ester-linked alanine, the ratios of these components were relatively constant throughout the growth cycle. There was a slight increase in the glucose content of the teichoic acid as the cells aged. There was no correlation between the amount of ester-linked alanine and the stage of growth. The ratio of teichoic acid (based upon phosphate content) to peptidoglycan (based upon diaminopimelic acid content) remained at nearly a constant level throughout the growth cycle. The conclusion is presented that these two cell wall polymers are coordinately synthesized during spore outgrowth and throughout the vegetative growth cycle.  相似文献   

9.
Teichoic acid-glycopeptide complexes were isolated from lysozyme digests of the cell walls of Bacillus coagulans AHU 1631, AHU 1634, and AHU 1638, and the structure of the teichoic acid moieties and their linkage regions was studied. On treatment with hydrogen fluoride, each of the complexes gave a hexosamine-containing disaccharide, which was identified to be glucosyl(beta 1----4)N-acetylglucosamine, in addition to dephosphorylated repeating units of the teichoic acids, namely, galactosyl(alpha 1----2)glycerol and either galactosyl(alpha 1----2)[glucosyl(alpha 1----1/3)]glycerol (AHU 1638) or galactosyl(alpha 1----2)[glucosyl(beta 1----1/3)]glycerol (AHU 1631 and AHU 1634). From the results of Smith degradation, methylation analysis, and partial acid hydrolysis, the teichoic acids from these strains seem to have the same backbone chains composed of galactosyl(alpha 1----2)glycerol phosphate units joined by phosphodiester bonds at C-6 of the galactose residues. The presence of the disaccharide, glucosyl(beta 1----4)N-acetylglucosamine, in the linkage regions between teichoic acids and peptidoglycan was confirmed by the isolation of a disaccharide-linked glycopeptide fragment from each complex after treatment with mild alkali and of a teichoic acid-linked saccharide from each cell wall preparation after treatment with mild acid. Thus, it is concluded that despite structural differences in the glycosidic branches, the teichoic acids in the cell walls of the three strains are linked to peptidoglycan through a common linkage saccharide, glucosyl (beta 1----4) N-acetylglucosamine.  相似文献   

10.
The morphology and cell wall composition of Bacillus coagulans, a facultative thermophile, were examined as a function of growth temperature. The morphology of the organism varied when it was grown at different temperatures; at 37 C the organism grew as individual cells which increased in length with increasing growth temperature. At 55 C it grew in long chains of cells. Cell wall prepared from cells grown at 37 C contained 44% teichoic acid by weight, whereas cells grown at 55 C contained 29% teichoic acid. Teichoic acid from these cells was a polymer of glycerol phosphate containing galactose and ester alanine. The ratio of ester alanine to phosphate was significantly higher in cell walls and teichoic acid from 37 C-grown cells compared with those from 55 C-grown cells. Other differences observed were that cells grown at 55 C contained a lower level of autolytic ability, produced cell walls which bound more Mg(2+), and contained less peptide cross-bridging in its peptidoglycan layer than cells grown at 37 C.  相似文献   

11.
Abstract The metabolism of d -alanyl substituents of lipoteichoic acid (LTA) and teichoic acid was studied in Staphylococcus aureus . Double labelling with [3H]glycerol and d -[14C]alanine revealed that during the chase LTA was stable whereas its 14C label rapidly decreased. Half-time comparison indicated an enzyme- rather than a base-catalyzed process. Correlated with the loss of [14C]alanine from LTA was an increase of the radioactivity in wall-linked alanine ester which, after hydrolysis with HF, proved to be linked to teichoic acid. These results suggest that LTA-alanine is the donor for alanine esterification of teichoic acid. In connection with previous data we hypothesize that the loss of alanine from LTA is compensated by de novo incorporation.  相似文献   

12.
The HF treatment of teichoic acid-glycopeptide complexes isolated from lysozyme digests of Bacillus coagulans AHU 1366 cell walls gave a disaccharide, glucosyl beta (1 leads to 4)N-acetylglucosamine, along with dephosphorylated repeating units of the teichoic acid chain, galactosyl alpha (1 leads to 2) glycerol. Mild alkali treatment of the complexes yielded the disaccharide linked to glycopeptide, whereas direct heating of the cell walls at pH 2.5 yielded the same disaccharide linked to teichoic acid. The Smith degradation of the complexes revealed that the galactose residue is a component of backbone chain. Thus it is concluded that this disaccharide is involved in the linkage region between poly(galactosylglycerol phosphate) and peptidoglycan in cell walls. Membrane-catalyzed synthesis of this disaccharide on a lipid followed by transfer of glycerol phosphate from CDP-glycerol to the disaccharide-linked lipid in the absence or in the presence of UDP-galactose also supports this conclusion.  相似文献   

13.
1. Studies were carried out to determine the cellular and subcellular site of biosynthesis of components of fraction I, an alpha-globulin fraction containing acidic glycoproteins isolated from guinea-pig serum. l-[U-(14)C]Leucine or -valine and d-[1-(14)C]glucosamine were used as precursors. 2. A lag of about 10min. occurred before appreciable label appeared in fraction I of serum after injection of leucine or glucosamine. Label in fraction I after 60min. labelling with glucosamine was present almost entirely in hexosamine and sialic acid. 3. Site of synthesis was investigated by studies in vivo up to 17min. after injection of precursor. Particulate subcellular fractions isolated from liver, spleen and kidney or homogenates of the latter two tissues were extracted with Lubrol. Extracts were allowed to react by double diffusion with antisera to fraction I or to subfractions isolated from it, and gels were subsequently subjected to radioautography. With either amino acid or glucosamine as precursor, only extracts of the microsome fraction of liver formed precipitin lines that were appreciably radioactive. 4. The role of the microsome fraction of liver in the synthesis of these glycoproteins was confirmed by immunological studies after incubation of liver slices with leucine or glucosamine. Incorporation of leucine was also investigated in a cell-free microsome system. 5. Material was also precipitated from certain Lubrol extracts of liver microsomes by direct addition of antiserum and its radioactivity measured. Degradation of material thus precipitated and use of heterologous immune systems showed that labelling of precipitin lines represented biosynthesis. 6. A study of extraction procedures suggested that the substances present in the microsome fraction of liver that react with specific antisera are associated with membranous structures. 7. Most or all precipitin lines formed by Lubrol extracts of liver microsomes interacted with precipitin lines given by guinea-pig serum or fraction I, immunological identity being apparent with some lines. The microsome-bound substances thus represent serum glycoproteins or precursors of them. 8. The distribution of label in various tissues and in the protein of subcellular fractions of liver after administration of [(14)C]glucosamine to the guinea pig was also studied. Some variation in results obtained with liver was found depending on the fractionation medium used.  相似文献   

14.
1. Walls of Staphylococcus epidermidis I2 contain 30% (w/w) of a glycerol teichoic acid containing phosphate, d-alanine and d-glucose in the molecular proportions 1:0.25:0.50. 2. The teichoic acid was isolated by extraction with trichloroacetic acid and with dilute aqueous NN-dimethylhydrazine at pH7, and was shown to be a (1-->3)-linked poly(glycerol phosphate) containing beta-d-glucopyranosyl and d-alanyl ester substituents. 3. 2-O-beta-d-Glucopyranosylglycerol was isolated and characterized as its crystalline hexa-O-acetate. 4. Unlike that of certain other bacteria, the peptidoglycan component of the wall is not solubilized by NN-dimethylhydrazine. 5. The membrane teichoic acid is also a (1-->3)-linked poly(glycerol phosphate) but contains a smaller proportion of glucosyl substituents.  相似文献   

15.
1. The teichoic acid from walls of Staphylococcus lactis I3 is readily degraded in dilute alkali. 2. Degradation proceeds by selective hydrolysis of that phosphodiester group attached to an alcoholic hydroxyl group of the N-acetylglucosamine and gives a repeating unit in high yield. 3. Further studies on a different repeating unit isolated by partial acid hydrolysis have shown that the glycerol diphosphate is attached to the 4-hydroxyl group of the N-acetylglucosamine and not to the 3-hydroxyl group as was proposed earlier. 4. The susceptibility towards hydrolysis by alkali of other structural types of teichoic acid has been examined and found to vary markedly according to their structure.  相似文献   

16.
Structurally identical teichoic acids were detected in cell walls of two soil isolates assigned to Brevibacterium linens based on phylogenetic data. Both cell walls contain unsubstituted 1,3-poly(glycerol phosphate) and poly(glycosylglycerol phosphate). Repeating units of the latter--alpha-D-GlcpNAc-(1-->4)-beta-D-Galp-(1-->1)-Gro--are bound by phosphodiester bonds including OH-3 of galactose and OH-3 of glycerol. Some of the N-acetylglucosamine residues have 4,6-pyruvic acid acetal, amounts of the latter in the two strains being unequal. Species-specificity of the structures of teichoic acids in the genus Brevibacterium is discussed.  相似文献   

17.
Compact-colony forming active substance (CCFAS), the material responsible for the compact colonies of Staphylococcus aureus observed in serum soft agar, was found to be an alkaline-stable, associated polysaccharide containing galactose, N-acetylglucosamine, ribitol, phosphorus and a small quantity of alanine. This substance, when extracted from strains unable to produce protein A clumping factor, was able to absorb the serum-reacting factor whereas a teichoic acid preparation of one strain could not. The formation of CCFAS was unaffected by the age of the cells, whereas when staphylococci were cultured at alkaline pH, young cells produced more clumping factor than old ones. Both fibrinogen and its degradation products were capable of inducing compact colonies in a strain of S. aureus. The ability of human sera to interact in compact-colony formation was independent of the immunoglobin content. Thus neither protein A, clumping factor, nor teichoic acid participate in the CCFAS reaction.  相似文献   

18.
S Kaya  K Yokoyama  Y Araki    E Ito 《Journal of bacteriology》1984,158(3):990-996
The structure of teichoic acid-glycopeptide complexes isolated from lysozyme digests of cell walls of Bacillus subtilis (four strains) and Bacillus licheniformis (one strain) was studied to obtain information on the structural relationship between glycerol teichoic acids and their linkage saccharides. Each preparation of the complexes contained equimolar amounts of muramic acid 6-phosphate and mannosamine in addition to glycopeptide components and glycerol teichoic acid components characteristic of the strain. Upon treatment with 47% hydrogen fluoride, these preparations gave, in common, a hexosamine-containing disaccharide, which was identified as N- acetylmannosaminyl (1----4) N-acetylglucosamine, along with large amounts of glycosylglycerols presumed to be the dephosphorylated repeating units of teichoic acid chains. The glycosylglycerol obtained from each bacterial strain was identified as follows: B. subtilis AHU 1392, glucosyl alpha (1----2)glycerol; B. subtilis AHU 1235, glucosyl beta(1----2) glycerol; B. subtilis AHU 1035 and AHU 1037, glucosyl alpha (1----6)galactosyl alpha (1----1 or 3)glycerol; B. licheniformis AHU 1371, galactosyl alpha (1----2)glycerol. By means of Smith degradation, the galactose residues in the teichoic acid-glycopeptide complexes from B. subtilis AHU 1035 and AHU 1037 and B. licheniformis AHU 1371 were shown to be involved in the backbone chains of the teichoic acid moieties. Thus, the glycerol teichoic acids in the cell walls of five bacterial strains seem to be joined to peptidoglycan through a common linkage disaccharide, N- acetylmannosaminyl (1----4)N-acetylglucosamine, irrespective of the structural diversity in the glycosidic branches and backbone chains.  相似文献   

19.
An antigenic determinant isolated from a strain of the Gram-negative bacterium Butyrivibrio fibrisolvens reacted with specific antisera to the polyglycerophosphate backbone of membrane teichoic acids of lactobacilli. It gave a reaction of identity with membrane glycerol lipoteichoic acid and glycerol teichoic acid preparations from lactobacilli, and with phenol extracts of other Gram-positive bacteria. The antigen-antibody reactions was strongly inhibited by glycerol-phosphoryl-glycerol-phosphoryl-glycerol and the chemical composition was consistent with glycerol teichoic acid. It was concluded that this Gram-negative bacterium contained a glycerol teichoic acid whose polyglycerophospate backbone was acting as antigenic determinant. Extracts of 33 out of 52 other strains of butyrivibrios examined gave similar reactions.  相似文献   

20.
Structures of the anionic polymers of streptomycetes Streptomyces fulvissimus VKM Ac-994(T), Streptomyces longispororuber VKM Ac-1735(T), Streptomyces aureoveticillatus VKM Ac-48(T) and Streptomyces spectabilis INA 00606 belonging to the phenetic cluster 'S. fulvissimus' were investigated by chemical and NMR spectroscopic methods. A teichoic acid from the cell wall of S. spectabilis INA 00606 was studied in more detail, and this was shown to represent 1,3-poly(glycerol phosphate) substituted with glucosamine (alpha-D-GlcNAc) and L-glutamic acid (non-stoichiometric substitution). For the first time, glutamic acid is identified as an acyl substituent in teichoic acids of streptomycetes. The polymer chain is built of the following fragments: Cell walls of other streptomycetes of the phenocluster under study contain 1,3-poly(glycerol phosphates) with glucosamine as a glycosyl substituent at O-2 of the glycerol phosphate units and L-glutamic acid and lysine as O-2 acyl substituents. Not all amino sugar residues in the polymers of these strains are N-acetylated, and the content of the glucosamine and lysine residues in the polymers of different strains is not the same. Despite certain quantitative differences in the structures of the polymers, one may consider streptomycetes of the phenocluster 'S. fulvissimus' as closely related microorganisms, the details of the structures serving as additional criteria for the determination of the species status of a strain under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号