首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
Succession has a strong influence on species diversity and composition of terrestrial ecosystems. Peat bogs are among them. They have a large area in Belarus compared to other Central European countries. While in several studies have analyzed the effects of succession on vegetation in peat bog ecosystems, the response of peatland insects to succession has not been investigated yet. To address this issue were sampled Auchenorrhyncha abundance and environmental parameters on the ancient and one of the largest natural peat bog along a successional gradient from the margin to the bog dome. The results provide evidence that succession of peat bogs has influence on planthoppers and leafhoppers abundance, diversity and species composition. Along the successional gradient from younger towards older successional stages an increase abundance of specialized peat bog species, chamebionts, oligophagous and monophagous was observed. On the contrary, the younger stages of natural peat bog succession offer favorable conditions to eurytopic, polyphagous and chortobiont planthoppers and leafhoppers. The highest abundance and species richness of Auchenorrhyncha were in the lagg zone followed by early stages of natural peat bog succession. The highest diversity was in the middle stages of succession. A determinant of Auchenorrhyncha diversity was the cover of ericaceous dwarf shrubs. Linear models shrub cover and number of plants species had a positive effect on planthoppers and leafhoppers diversity and a negative effect on their abundance. Amount of ericaceous dwarf shrubs within the peat bog could be as a measure of heterogeneity.  相似文献   

2.
We evaluated forest structure and composition in 9- to 13-year-old stands established on a bauxite-mined site at Trombetas (Pará), Brazil, using four different reforestation techniques following initial site preparation and topsoil replacement. These techniques included reliance on natural forest regeneration, mixed commercial species plantings of mostly exotic timber trees, direct seeding with mostly native early successional tree species, and mixed native species plantings of more than 70 tree species (the current operational restoration treatment at this site). Replicated fixed-radius plots in each treatment and in undisturbed primary forest were used to quantify the canopy and understory structure and the abundance and diversity of all vascular plant species. Treatment comparisons considered regeneration density, species richness and diversity for all floristic categories, and, for trees and shrubs, the relative contribution of initial planting and subsequent regeneration from soil seed banks and seed inputs from nearby primary forests. With the possible exception of the stands of mixed commercial species, which were superior to all others in terms of tree basal-area development but relatively poor in species richness, all treatments were structurally and floristically diverse, with a high probability of long-term restoration success. Of these, the mixed native species plantings appeared to be at least risk of arrested succession due to the dominance of a broader range of tree species of different successional stages or expected life spans. In all treatments, several locally important families of primary forest trees (Annonaceae, Chrysobalanaceae, Lauraceae, Palmae and Sapotaceae) were markedly underrepresented due to a combination of poor survival of initial plantings and limitations on seed dispersal from the surrounding primary forest.  相似文献   

3.
不同演替阶段鼢鼠土丘群落植物多样性变化研究   总被引:14,自引:2,他引:14  
用空间序列代替时间序列的方法对高寒草甸不同演替阶段高原鼢鼠土丘植物群落的物种组成和多样性变化进行了研究.结果表明,不同演替阶段鼠丘植物群落的物种组成及外貌特征与原生植被(对照)之间存在较大差异.在演替的早期阶段,r对策者如萼果香薷、灰绿藜、鹅绒委陵菜、细叶亚菊等演替先锋种在群落中占相对重要地位.随着演替的进展,k对策者如长毛风毛菊、垂穗披碱草、甘肃嵩草、线叶嵩草等在群落中的比例增加.α多样性分析表明,随着演替的进展,群落物种丰富度指数(O)显著增加,其排列顺序为:阶段1<阶段2<阶段3<阶段4<原生植被;均匀度指数(Pielou均匀度指数)的变化趋势与丰富度指数相同;多样性指数(Simpson指数D和Shannon-.Wiener指数H’)按群落的演替梯度呈增加趋势.卢多样性分析表明,阶段1与原生植被及阶段1与阶段4植物群落物种组成的相似系数最小,为0.18;阶段1与阶段2植物群落物种组成的相似系数最大,为0.62.同时,群落生活型功能群组成也随鼠丘的演替进展而发生变化,反映出不同演替阶段的鼠丘植物群落和微生境都发生了改变.  相似文献   

4.
确立了滨河河道硬度与滨河土地硬度两个指标,用以研究城市化地区河岸带的植物构成、多样性与均匀度、优势植物等特征与河岸硬度的关系。选定晋江市都市区12条主要河流作为研究对象,通过样地调查收集数据,并采用相应指数进行数据处理分析,结果表明:(1)调查河流的河岸带植被物种共计70科143属159种,其中乔木20科30属41种,灌木15科15属20种,草本35科98属98种,草本居主导地位,河流间种类分布不均衡;(2)河岸带植物乔灌草区系均以广义热带性成分居多,其次为世界性成分、温带性成分,无中国特有分布类型,乔木中广义热带成分占绝对主导,直观反映地带性特征,灌木与草本中的温带成分多于乔木中的温带成分,类型趋于多元,种类更丰富;(3)从河岸植被优势植物构成来看,主要优势乔木与灌木基本为本土植物,而主要草本中外来植物入侵严重,对地带性植物景观的指示显然不及乔木与灌木;(4)从河岸植被的人工美学属性来看,灌木优势植物中园林观赏植物的种类数显著多于乔木、草本优势植物,反映出晋江人工审美主导的滨河景观空间主要改变与塑造了灌木层植被景观;(5)从河岸植物的人居需求属性来看,龙眼、杨桃等多见于庭院林、水岸林的水果树种也在河岸植被中频繁出现,反映出人口密集区由于对植物生产用途的重视而对河岸植被产生的影响;(6)滨河土地硬度与河道硬度对河岸带灌木植物的影响最强烈,二者均对河岸带植物多样性造成威胁,且前者具有更大的影响力,而后者直接影响了河岸植物的分布形态,出于生产与审美目的的人为干扰对河岸带植物优势种的影响力随滨河硬度的增加而加强,低滨河硬度有助留存原生植被群落;(7)天然弯曲的河流形态对河流植被特征具有积极影响,有助于保留更多本土植被类型,并能在某种程度上丰富乔灌草的植物种类,但这种缓和作用无法根本扭转河岸硬化对植物多样性的胁迫影响。研究表明,城市化地区河流的岸带植被特征与沿线人为干扰类型和强度密切相关,恢复与塑造河岸生态景观要以乡土植被为主,通过乔木景观塑造地带性景观,并以灌木与草本丰富植被景观。  相似文献   

5.
Abstract. The influence of canopy trees and shrubs on under‐storey plants is complex and context‐dependent. Canopy plants can exert positive, negative or neutral effects on production, composition and diversity of understorey plant communities, depending on local environmental conditions and position in the landscape. We studied the influence of Prosopis velutina (mesquite) on soil moisture and nitrogen availability, and understorey vegetation along a topographic gradient in the Sonoran Desert. We found significant increases in both soil moisture and N along the gradient from desert to riparian zone. In addition, P. velutina canopies had positive effects, relative to open areas, on soil moisture in the desert, and soil N in both desert and intermediate terrace. Biomass of understorey vegetation was highest and species richness was lowest in the riparian zone. Canopies had a positive effect on biomass in both desert and terrace, and a negative effect on species richness in the terrace. The effect of the canopy depended on landscape position, with desert canopies more strongly influencing soil moisture and biomass and terrace canopies more strongly influencing soil N and species richness. Individual species distributions suggested interspecific variation in response to water‐ vs. N‐availability; they strongly influence species composition at both patch and landscape position levels.  相似文献   

6.
When compared to planted reforestation, natural unassisted regeneration is often reported to result in slow recovery of biomass and biodiversity, especially early in succession. In some cases, naturally regenerating forests are not comparable to the community structure of primary forests after many decades. However, direct comparison of the outcomes of tropical forest restoration and natural regeneration is hindered by differences in metrics of forest recovery, inconsistency in land use histories, and dissimilarities in experimental design. We present the results of a replicated reforestation experiment comparing natural regeneration and polyculture tree planting at multiple diversity levels (3, 6, 9, or 12 native tree species), with uniform land use history and initial edaphic conditions. We compare the recovery of basal area and floristic diversity in these treatments after 5 yr of succession. Total basal area was higher in planted plots than in naturally regenerating plots, but it but did not vary among the different planted diversity levels. The basal area of woody recruits did not differ among treatments. The diversity of woody recruits increased substantially over time but did not vary among planting treatments. Species composition trajectories showed directional turnover over time, with no consistent differences among treatments. The convergence of restoration trajectories and similarity of floristic community diversity and composition across all treatments, after only 5 yr, provides evidence of the viability of natural regeneration for rapid restoration of forest biodiversity.  相似文献   

7.
Aims Forest vegetation variability may be explained by the complex interplay among several spatial structuring factors, including climate and topography. We modelled the spatial variability of forest vegetation assemblages and significant environmental variables along a complex environmental gradient or coenocline to produce a detailed cartographic database portraying the distribution of forests along it.Methods We combined an analysis of ordination coenoclines with kriging over 772 field data plots from the third Spanish National Forest Inventory in an Atlantic–Mediterranean transitional area (northern Spain).Important findings The best fitted empirical semivariogram revealed a strong spatial structure of forest species composition along the complex environmental gradient considered (the climatic–topographic gradient from north to south). The steady and gradual increase of semivariance with a marked lag distance indicates a gradual turnover of forest assemblages according to the climatic–topographic variations (regional or local). Two changes in the slope of the semivariogram suggest the existence of two different scales of spatial variation. The interpolation map by Kriging of forest vegetation assemblages along the main coenocline shows a clear spatial distribution pattern of trees and shrubs in accordance with the spatial variation of significant environmental variables. We concluded that the multivariate geostatistical approach is a suitable technique for spatial analysis of forest systems employing data from national forest inventories based on a regular network of field plots. The development of an assortment of maps describing changes in vegetation assemblages and variation in environmental variables is expected to be a suitable tool for an integrated forest management and planning.  相似文献   

8.
上海居住区植物多样性的均质化   总被引:3,自引:0,他引:3  
宋坤  秦俊  高凯  胡永红 《应用生态学报》2009,20(7):1603-1607
居住区植被是我国城市植被的重要组成体,其多样性的分布格局将影响城市植被的多样性.通过对上海市中心、市郊和郊县居住区的植被调查,比较了城乡梯度上居住区绿化观赏植物、杂草和自生逃逸植物的多样性和物种组成.结果表明:城乡梯度上,绿化观赏植物和杂草的丰富度不存在显著差异,而市郊自生逃逸植物的丰富度最高;不同城乡梯度居住区中,绿化观赏植物、杂草和自生逃逸植物的物种组成相似,其中40%~50%的物种为共有种.上海城镇居住区植物均质化的主要原因是几近雷同的居住区建造风格和绿化形式,制约了绿化植物的使用和异质生境的营造.  相似文献   

9.
以川东低山区29年生马尾松人工林为对象,研究了不同间伐强度(0、10%、20%、30%、40%、50%)处理1年后林下植被群落物种组成与多样性分异特征初期响应。结果表明: 各间伐处理均能降低草本植物芒、芒萁的优势地位,而各处理灌木的优势物种组成较复杂,中等间伐强度(20%、30%、40%)处理泛化种较其他处理明显增多。各多样性指数随间伐强度增高呈现先增后降的变化趋势,草本植物较灌木的分异性更强,且各指数与土壤含水量均呈显著正相关。间伐强度与土壤理化性质对群落分异解释量为81%,中等间伐强度林下植被群落除全磷外与其他因子表现出正相关关系。间伐初期草本植物群落较灌木群落更能积极响应干扰;40%间伐强度处理与土壤环境因子关系紧密,群落稳定性高,物种最为丰富,为本试验条件下间伐措施的最佳处理。  相似文献   

10.
We analyzed the impacts of succession and grass encroachment on carabid beetle and spider assemblages in a coastal heathland. Further, indicator species for different successional stages (grey dunes, dwarf-shrub heath, grassy heath, heath with shrubs, birch forest) were identified, and their relations to habitat parameters were analyzed. The study was conducted on the Baltic island of Hiddensee, Germany. Ground-dwelling arthropods were sampled using pitfall traps along a successional gradient containing five stages. Ordination by nonmetric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) revealed a clear separation of species composition among the successional stages. Both in carabid beetles and spiders, most indicator species were obtained in the youngest stage (grey dunes) and fewest in the intermediate stages (grassy heath, heath with shrubs). Also the proportion of endangered species was highest in grey dunes. Based on our results, conservation management of coastal heathlands should preserve a mosaic of different successional stages with a clear preference on younger stages (grey dunes and dwarf-shrub heath).  相似文献   

11.
Knowledge of the recovery of insect communities after forest disturbance in tropical Africa is very limited. Here, fruit‐feeding butterflies in a tropical rain forest at Kibale National Park, Uganda, were used as a model system to uncover how, and how fast, insect communities recover after forest disturbance. We trapped butterflies monthly along a successional gradient for one year. Traps were placed in intact primary forest compartments, heavily logged forest compartments with and without arboricide treatment approximately 43 years ago, and in conifer‐clearcut compartments, ranging from 9 to 19 years of age. The species richness, total abundance, diversity, dominance, and similarity of the community composition of butterflies in the eight compartments were compared with uni‐ and multivariate statistics. A total of 16,728 individuals representing 88 species were trapped during the study. Butterfly species richness, abundance, and diversity did not show an increasing trend along the successional gradient but species richness and abundance peaked at intermediate stages. There was monthly variation in species richness, abundance, diversity and composition. Butterfly community structure differed significantly among the eight successional stages and only a marginal directional change along the successional gradient emerged. The greatest number of indicator species and intact forest interior specialists were found in one of the primary forests. Our results show that forest disturbance has a long‐term impact on the recovery of butterfly species composition, emphasizing the value of intact primary forests for butterfly conservation.  相似文献   

12.
不同海拔红松林土壤微生物功能多样性   总被引:5,自引:0,他引:5  
韩冬雪  王宁  王楠楠  孙雪  冯富娟 《生态学杂志》2015,26(12):3649-3656
为全面了解红松林土壤微生物碳源利用特点,以长白山海拔700~1100 m红松林0~5和5~10 cm表土为研究对象,采用Biolog微平板法,分析了土壤微生物功能多样性沿海拔的垂直分布特征和变化规律.结果表明: 不同海拔红松林土壤微生物功能多样性差异显著,平均每孔颜色变化率(AWCD)随培养时间延长而增加,同一深度土层的AWCD值随海拔升高而降低;Shannon、Simpson和McIntosh多样性指数也随海拔升高呈现下降趋势,且不同海拔间3个多样性指数差异显著;物种多样性和功能多样性表现出相同的变化规律.土壤微生物对6大类碳源利用强度存在差异,各海拔土壤微生物对氨基酸类碳源利用率最高,为优势碳源;主成分分析表明,不同海拔土壤微生物在碳源利用上有明显的空间分异,土壤微生物功能多样性垂直地带性差异主要体现在对碳水类、氨基酸类和羧酸类碳源的利用上,其中碳水类尤为突出.对不同海拔土壤微生物群落功能多样性聚类分析表明,样地植被组成会对土壤微生物组成和功能活性产生重要影响.  相似文献   

13.
Understory Vegetation Dynamics of North American Boreal Forests   总被引:2,自引:0,他引:2  
Understory vegetation is the most diverse and least understood component of North American boreal forests. Understory communities are important as they act as drivers of overstory succession and nutrient cycling. The objective of this review was to examine how understory vegetation abundance, composition, and diversity change with stand development after a major stand replacing disturbance. Understory vegetation abundance and diversity increase rapidly after fire, in response to abundant resources and an influx of disturbance adapted species. The highest diversity occurs within the first 40 years following fire, and declines indefinitely thereafter as a result of decreasing productivity and increased dominance of a small number of late successional feather mosses and woody plant species. Vascular plant and bryophyte/lichen communities undergo very different successional changes. Vascular plant communities are dynamic and change more dramatically with time after fire, whereas bryophyte and lichen communities are much slower to establish and change over time. Considerable variations in these processes exist depending on canopy composition, site condition, regional climate, and frequently occurring non-stand-replacing disturbances. Forest management practices represent a unique disturbance process and can result in different understory vegetation communities from those observed for natural processes, with potential implications for overstory succession and long-term productivity. Because of the importance of understory vegetation on nutrient cycling and overstory composition, post-harvest treatments emulating stand-replacing fire are required to maintain understory diversity, composition, and promote stand productivity in boreal forests.  相似文献   

14.
Environmental characteristics have a major effect on the species composition of seasonally dry tropical forest. However, this effect has been little considered when describing secondary succession of this ecosystem. We tested the hypothesis that local environmental heterogeneity influences successional trajectories when high species richness is available. Changes in species composition and structure were described in 126 vegetation plots differing in successional stage and located along a topographical and soil nutrient gradient. Variation in community composition was partitioned between successional stage, environmental characteristics, and spatial structure using redundancy analyses. In addition, relationships between plot distance matrices for these factors were analysed by means of Mantel tests. High species turnover was observed during succession and species composition similarity was higher among late successional forest than among early and intermediate forests. A higher portion of variation in species composition was explained by environmental characteristics compared to successional stage, whereas the spatial structure of the data was weak. Our results suggest that in the region of study, variation in the successional trajectories is occurring owing to environmental heterogeneity, as well as to human disturbance and other unmeasured processes.  相似文献   

15.
Questions: Are the vegetation attributes significantly different among lava domes and among geomorphologic units as a result of age and soil features? Are the successional rates equal in all the geomorphologic units of the domes? Are the colonizer species of lava domes totally replaced by other species in the late successional stages? Location: Terceira Island, Azores (Portugal). Methods: Three comparable domes of 240, 370 and 2080 yr old were selected. Data on floristic composition, vegetation bioarea (area occupied by plant species in transects), structure, demography and soil nutrients were collected. Quantitative and qualitative changes along the succession gradient were also analyzed. Results: Vegetation attributes were consistent with the successional stage of each dome in the primary sere; however, the geomorphologic units did not follow the same pattern. The influence of the rates of plant colonization and soil formation are responsible for the decrease of the successional rates from footslopes, to summits, to slopes. The vegetation successionally changes from Juniperus scrub, to Juniperus wood and forest, and there is little species replacement since the similarity in species composition is high between the 3 domes. Conclusions: This is a special type of direct succession that takes place mainly through an increase in biomass and structural complexity. We observed small wooded areas in the fissures of very young domes that are samples of later successional forests — a phenomenon that we call ‘zoom effect’.  相似文献   

16.
Overabundance of woody plants in semiarid ecosystems can degrade understory herbaceous vegetation and often requires shrub reduction and seeding to recover ecosystem services. We used meta‐analysis techniques to assess the effects of fire and mechanical shrub reduction over two post‐treatment timeframes (1–4 and 5–10 years) on changes in cover and frequency of 15 seeded species at 63 restoration sites with high potential for recovery. Compared to mechanical treatments, fire resulted in greater increases in seeded species. Native shrubs did not increase, and forbs generally declined over time; however, large increases in perennial grasses were observed, suggesting that seeding efforts contributed to enhanced understory herbaceous conditions. We found greater increases in a few non‐native species than native species across all treatments, suggesting the possibility that interference among seeded species may have influenced results of this regional assessment. Differences among treatments and species were likely driven by seedbed conditions, which should be carefully considered in restoration planning. Site characteristics also dictated seeded species responses: while forbs showed greater increases in cover over the long term at higher elevation sites considered to be more resilient to disturbance, surprisingly, shrubs and grasses had greater increases in cover and frequency at lower elevation sites where resilience is typically much lower. Further research is needed to understand the causes of forb mortality over time, and to decipher how greater increases of non‐native relative to native seeded species will influence species diversity and successional trajectories of restoration sites.  相似文献   

17.
Question: How does vegetation develop during the initial period following severe wildfire in managed forests? Location: Southwestern Oregon, USA. Methods: In severely burned plantations, dynamics of (1) shrub, herbaceous, and cryptogam richness; (2) cover; (3) topographic, overstory, and site influences were characterized on two contrasting aspects 2 to 4 years following fire. Analysis of variance was used to examine change in structural layer richness and cover over time. Non‐metric multidimensional scaling, multi‐response permutation procedure, and indicator species analysis were used to evaluate changes in community composition over time. Results: Vegetation established rapidly following wildfire in burned plantations, following an initial floristics model of succession among structural layers. Succession within structural layers followed a combination of initial and relay floristic models. Succession occurred simultaneously within and among structural layers following wildfire, but at different rates and with different drivers. Stochastic (fire severity and site history) and deterministic (species life history traits, topography, and pre‐disturbance plant community) factors determined starting points of succession. Multiple successional trajectories were evident in early succession. Conclusions: Mixed conifer forests are resilient to interacting effects of natural and human‐caused disturbances. Predicting the development of vegetation communities following disturbances requires an understanding of the various successional components, such as succession among and within structural layers, and the fire regime. Succession among and within structural layers can follow different successional models and trajectories, occurs at different rates, and is affected by multiple interacting factors.  相似文献   

18.
The Sanjiang Plain is the biggest freshwater wetland locating in northeastern China. Due to climate change and human activities, that wetland has degraded to a successional gradient from the original flooded wetland to dry shrub vegetation and a forest area with lower ground water level, which may result in changes in soil microbiologic structure and functions. The present study investigated the microbial diversity and community structure in relation to soil properties along that successional gradient. The soil physico‐chemical properties changed significantly with degradation stage. The Shannon diversity index of both soil bacteria (5.90–6.42) and fungi (1.7–4.19) varied significantly with successional stage (both p < .05). The community structures of soil bacteria and fungi in the early successional stages (i.e., the wetland) were significantly determined by water content, total nitrogen, and available nitrogen concentrations in soils, while those in the later successional stages (i.e., forests) were significantly structured by soil organic carbon, soil pH, and available phosphorus concentrations. These results suggest that the soil microbial structure is mainly determined by soil properties rather than by plant community such as plant species composition along successional stages.  相似文献   

19.
In the semi-arid Kerqin Sandy Land of north China, land desertification and frequent sand storms in the spring strongly affect the growth of grassland vegetation and crops, and give rise to large reductions in yield as a result of wind erosion and sand dune movement. To bring desertification under control and reduce its influence on grassland and farmlands, many measures have been developed and implemented for stabilizing mobile sand dunes and restoring desertified grasslands. This study was conducted from 1996 to 2003 to evaluate the effectiveness of desert land restoration after implementation of sand-fixing measures. The results showed that construction of straw checkerboards and planting of shrub seedlings significantly enhances topsoil development on the dune surface, increasing silt and clay content and facilitating accumulation of soil carbon and total N, as well as accelerating an increase in plant diversity, vegetation cover and plant density. These findings suggest that using straw checkerboards and planting shrubs are successful methods for mobile sand dune stabilization and desertified grassland restoration in semiarid regions. The mechanism creating these changes is a reduction in wind erosion and improvement of the soil environment for plants. In addition, our results showed that construction of straw checkerboards was slightly more effective in vegetation and soil restoration in comparison with planting shrub seedlings, especially at the primary stage.  相似文献   

20.
In urban brownfields (derelict sites), we studied the influence of local factors (successional age, vegetation structure, soil) and landscape context (spatial arrangement of brownfields of different successional stages) on the diversity of phytophagous insects, grasshoppers and leafhoppers (Orthoptera and Hemiptera: Auchenorrhyncha). The study was conducted on a total of 246 plots in the cities of Bremen and Berlin, Germany. We used a habitat modelling approach, enabling us to predict the community from single species models (30 species in Bremen, 28 in Berlin).
The results revealed that communities were predominantly determined by vegetation structure, followed by landscape context, soil parameters and site age. For most species, local factors were the most important. Only few species were strongly influenced by landscape context, even though some showed clear negative reactions to low proportions of brownfields in the surroundings.
Along a successional gradient of vegetation structure, from scarce and low to dense and high vegetation, the insect community was not static. Even though species numbers remained comparatively constant, species composition changed considerably. Many species showed clear preferences for certain successional stages. Thus, maintaining the regional species pool of a city requires a mosaic of all successional stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号