首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of 5-hydroxytryptamine-2B (5-HT2B) receptor mRNA has recently been shown in cultured astrocytes. Here the expression of functional 5-HT2B receptors has been studied in cultured astrocytes from rat cerebral cortex, hippocampus, and brain stem. Fluo-3- and fura-2-based microspectrofluorometry was used for measuring changes in intracellular free calcium concentrations ([Ca2+]i). The 5-HT2B agonist alpha-methyl 5-HT (40 nM) produced rapid transient increases in [Ca2+]i in astrocytes from all three brain regions studied, and these responses were blocked by the selective 5-HT2B antagonist rauwolscine (1 microM). The specificity of the responses to alpha-methyl 5-HT was further demonstrated by the failure of 4-(4-fluorobenzoyl)-1-(4-phenylbutyl)-piperidine oxalate (1 microM), a specific 5-HT2A/5-HT2C antagonist, to block these responses. The 5-HT2B-induced increases in [Ca2+]i persisted in Ca2+-free buffer, indicating that the increase in [Ca2+]i results from mobilization of intracellular Ca2+ stores. The expression of 5-HT2B receptors on astroglial cells was further verified immunohistochemically and by Western blot analysis. These results provide evidence of the existence of 5-HT2B receptors on astrocytes in primary culture.  相似文献   

2.
A rise in cytosolic free Ca2+ is the immediate trigger for contraction in vascular smooth muscle (VSM). We employed the fluorescent Ca2(+)-indicator, Fura-2, and digital imaging microscopy to study the spatial distribution of intracellular Ca2+ in cultured A7r5 cells and the changes evoked by activation with 5-HT. Several methodological considerations that affect the temporal and spatial resolution of Ca2+ images have been addressed. These include: cytoplasmic distribution of Fura-2, wavelength selection for ratio imaging, signal:noise ratio measurement and the effect of [Ca2+] on the limits of detectability under conditions in which [Ca2+] is changing. The distribution of apparent free Ca2+, [Ca2+]App, in A7r5 cells was heterogeneous. This reflects, in part, different pools of intracellular Ca2+. [Ca2+]App was lowest in the nucleus (113 +/- 14 nM; n = 20 cells) and highest in the organelle-rich perinuclear region (228 +/- 12; n = 20), while the surrounding cytoplasmic area (containing relatively few organelles) had intermediate [Ca2+]app levels (150 +/- 13; n = 20). 5-HT (1 microM) evoked transient increases in [Ca2+]App that began within 11 s as relatively modest elevations of [Ca2+]App in the periphery, near the sarcolemma, and subsequently spread to the entire cell, reaching a peak within 18-24 s. At the peak of the Ca2+ transients, [Ca2+]App was highest in the perinuclear region where it sometimes exceeded the maximal detectable levels of the system (1.9 microM). The average peak Ca2+ transient amplitude in the non-nuclear cytoplasm was 1083 +/- 208 nM (1 microM 5-HT; n = 20 cells). Despite the continued presence of 5-HT following the Ca2+ transients, [Ca2+]App then returned to pre-stimulation levels within 5 min. These observations indicate that digital imaging microscopy enables the study of subcellular regulation of intracellular Ca2+ in VSM. The results provide new insights into the role of localized changes in Ca2+ in the regulation of VSM contractility.  相似文献   

3.
To evaluate the relationship between the vasocontractile effect of thiopental and the extra and intracellular sources of Ca2+, we analyzed both the contractile effect of the barbiturate on rat aortic rings and its ability to modify the intracellular calcium concentration in cultured rat aorta smooth muscle cells. Thiopental (10-310 microg/mL) contracted aortic rings only in the presence of extracellular Ca2+, and this effect was not blocked by verapamil or diltiazem. On the contrary, Ca2+ (0.1-3.1 mM) evoked contractions only when thiopental (100 microg/mL) was present. Although in calcium-free solution thiopental (100 microg/mL) did not contract aortic rings, it abolished the contractile effect of either phenylephrine (10(-6) M) or caffeine (10 mM). Finally, thiopental augmented the intracellular calcium concentration in cultured smooth muscle cells incubated either in the presence or absence of calcium. In conclusion, thiopental's vasocontractile effect depends on extracellular calcium influx, which is independent of L-calcium channels. The increase in intracellular Ca2+ concentration elicited by thiopental in Ca2+-free solution and its ability to block the effect of phenylephrine and caffeine suggest that this barbiturate can deplete intracellular pools of calcium. Therefore, the calcium entry pathway associated with the contractile effect of thiopental may correspond to the capacitative calcium entry model.  相似文献   

4.
Although serotonin (5-HT) induced proliferation of vascular smooth muscle cells is considered to involve changes in intracellular Ca2+ ([Ca2+]i), the mechanism of Ca2+ mobilization by 5-HT is not well defined. In this study, we examined the effect of 5-HT on rat aortic smooth muscle cells (RASMCs) by Fura-2 microfluorometry for [Ca2+]i measurements. 5-HT was observed to increase the [Ca2+]i in a concentration- and time-dependent manner. This action of 5-HT was dependent upon the extracellular concentration of Ca2+ ([Ca2+]e) and was inhibited by both Ca2+ channel antagonists (verapamil and diltiazem) and inhibitors of sarcoplasmic reticular Ca2+ pumps (thapsigargin and cyclopia zonic acid). The 5-HT-induced increase in [Ca2+]i was blocked by sarpogrelate, a 5-HT2A-receptor antagonist, but not by different agents known to block other receptor sites. 5-HT-receptor antagonists such as ketanserin, cinanserin, and mianserin, unlike methysergide, were also found to inhibit the 5-HT-induced Ca2+ mobilization, but these agents were less effective in comparison to sarpogrelate. On the other hand, the increase in [Ca2+]i in RASMCs by ATP, angiotensin II, endothelin-1, or phorbol ester was not affected by sarpogrelate. These results indicate that Ca2+ mobilization in RASMCs by 5-HT is mediated through the activation of 5-HT2A receptors and support the view that the 5-HT-induced increase in [Ca2+]i involves both the extracellular and intracellular sources of Ca2+.  相似文献   

5.
Embryonic cells transiently express an embryonic muscarinic system during morphogenesis. Stimulation of the embryonic muscarinic receptor results in biphasic intracellular Ca2+ mobilization: an initial "peak" due to Ca2+ release from intracellular stores is followed by a sustained "plateau" of enhanced cytoplasmic Ca2+ due to influx of extracellular Ca2+. In the present investigation, we characterized the Ca2+ influx by measuring the cytoplasmic free Ca2+ concentration [Ca2+]i using the Ca2+ indicator fura-2: 1. The increase of [Ca2+]i during the plateau depended linearly on the logarithm of the extracellular calcium concentration whereas the initial peak was almost independent from extracellular calcium. 2. The organic Ca2+ entry blockers verapamil, gallopamil, nifedipine, nitrendipine and the inorganic blockers Mn2+, Mg2+ and La3+ were without effect on both phases of Ca2+ mobilization. Only Ni2+ at concentrations above 1 mM was able to reduce the influx without affecting the intracellular Ca2+ release. 3. Substitution of extracellular Na+ by guanidine+, choline+ or tris+ and membrane depolarisation by increasing the extracellular K+ concentration had no effect on either phase of Ca2+ mobilization. We conclude that a non-voltage dependent, receptor-operated influx mechanism, probably a "second messenger operated Ca2+ channel", is responsible for the Ca2+ influx after stimulation of the embryonic muscarinic receptor.  相似文献   

6.
Sodium fluoride was used to investigate a possible involvement of G-proteins in the regulation of endothelial calcium channels. Incubation of cultured porcine aortic endothelial cells with sodium fluoride produced a dose-dependent increase in intracellular free calcium (EC50 approximately 5 mM). The effect strictly depended on the presence of extracellular CaCl2, indicating an enhanced influx of extracellular Ca2+ rather than a release of Ca2+ from intracellular stores. The Al3+ chelator deferoxamine abolished the stimulatory effect of sodium fluoride but did not interfere with the stimulatory effect of bradykinin. These data confirm the current hypothesis that the complex AlF-4 and not the fluoride anion activates G-proteins and exclude a direct inhibitory effect of deferoxamine on Ca2(+)-uptake. In contrast to isoproterenol and 5'-N-ethylcarboxamido-adenosine (NECA), which elevated endothelial cAMP-levels without affecting intracellular Ca2(+)-concentrations, sodium fluoride was not able to increase endothelial cAMP. This indicates that the effect of sodium fluoride on endothelial Ca2(+)-levels is not due to stimulation of a Gs-protein. Similar to its effect on cytoplasmic Ca2+, sodium fluoride also increased endothelial cGMP-levels which has recently been suggested to serve as biochemical marker for the formation of endothelium derived relaxing factor (EDRF). Thus, similar to the activation of receptor operated calcium channels, direct stimulation of a G-protein by sodium fluoride results in an increase of cytoplasmic Ca2+ and the formation of EDRF.  相似文献   

7.
Longitudinal muscle cells were successfully isolated from pregnant rat myometrium (21 days of gestation) with more than a 95% survival rate. The approximate size of relaxed cells was 232.2 +/- 74 microns in length and 16.2 +/- 7.0 microns in width. Using the fluorescent indicator Fura-2, the concentration of intracellular free calcium ([Ca2+]i) in resting state cells was calculated to be 116 +/- 18.5 nM. The isolated cells responded well to K+, acetylcholine and oxytocin in terms of contraction as well as the increase in [Ca2+]i. The increase in [Ca2+]i induced by acetylcholine and K+ appeared to be mainly due to an influx of extracellular Ca2+. On the other hand, the oxytocin-induced increase in [Ca2+]i was mainly due to a release of Ca2+ from intracellular storage sites in the isolated cells. Isolated longitudinal muscle cells can serve as a useful tool in establishing the relationship between [Ca2+]i and regulation of the uterine contraction at the final stage of pregnancy.  相似文献   

8.
The intracellular free Ca2+ concentration ([free Ca2+]i) was measured simultaneously with the Ca2+ extrusion from single isolated mouse pancreatic acinar cells placed in a microdroplet of extracellular solution using the fluorescent probes fura-2 and fluo-3. The extracellular solution had a low total calcium concentration (15-35 microM), and acetylcholine (ACh), applied by microionophoresis, therefore only evoked a transient elevation of [free Ca2+]i lasting about 2-5 min. The initial sharp rise in [free Ca2+]i from about 100 nM toward 0.5-1 microM was followed within seconds by an increase in the total calcium concentration in the microdroplet solution ([Ca]o). The rate of this rise of [Ca]o was dependent on the [free Ca2+]i elevation, and as [free Ca2+]i gradually decreased Ca2+ extrusion declined with the same time course. Ca2+ extrusion following ACh stimulation was not influenced by removal of all Na+ in the microdroplet solution indicating that the Ca2+ extrusion is not mediated by Na(+)-Ca2+ exchange but by the Ca2+ pump. The amount of Ca2+ extruded during the ACh-evoked transient rise in [free Ca2+]i corresponded to a decrease in the total intracellular Ca concentration of about 0.7 mM which is close to previously reported values (0.5-1 mM) for the total concentration of mobilizable calcium in these cells. Our results therefore demonstrate directly the ability of the Ca2+ pump to rapidly remove the large amount of Ca2+ released from the intracellular pools during receptor activation.  相似文献   

9.
《The Journal of cell biology》1986,103(6):2379-2387
Considerable evidence suggests that Ca2+ modulates endothelial cell metabolic and morphologic responses to mediators of inflammation. We have used the fluorescent Ca2+ indicator, quin2, to monitor endothelial cell cytosolic free Ca2+, [Ca2+]i, in cultured human umbilical vein endothelial cells. Histamine stimulated an increase in [Ca2+]i from a resting level of 111 +/- 4 nM (mean +/- SEM, n = 10) to micromolar levels; maximal and half-maximal responses were elicited by 10(-4) M and 5 X 10(-6) M histamine, respectively. The rise in [Ca2+]i occurred with no detectable latency, attained peak values 15-30 s after addition of stimulus, and decayed to a sustained elevation of [Ca2+]i two- to threefold resting. H1 receptor specificity was demonstrated for the histamine-stimulated changes in [Ca2+]i. Experiments in Ca2+-free medium and in the presence of pyrilamine or the Ca2+ entry blockers Co2+ or Mn2+, indicated that Ca2+ mobilization from intracellular pools accounts for the initial rise, whereas influx of extracellular Ca2+ and continued H1 receptor occupancy are required for sustained elevation of [Ca2+]i. Ionomycin-sensitive intracellular Ca2+ stores were completely depleted by 4 min of exposure to 5 X 10(-6) M histamine. Verapamil or depolarization of endothelial cells in 120 mM K+ did not alter resting or histamine-stimulated [Ca2+]i, suggesting that histamine-elicited changes are not mediated by Ca2+ influx through voltage-gated channels. Endothelial cells grown on polycarbonate filters restricted the diffusion of a trypan blue-albumin complex; histamine (through an H1- selective effect) promoted trypan blue-albumin diffusion with a concentration dependency similar to that for the histamine-elicited rise in [Ca2+]i. Exposure of endothelial cells to histamine (10(-5) M) or ionomycin (10(-7) M) was associated with a decline in endothelial F- actin (relative F-actin content, 0.76 +/- 0.07 vs. 1.00 +/- 0.05; histamine vs. control, P less than 0.05; relative F-actin content, 0.72 +/- 0.06 vs. 1.00 +/- 0.05; ionomycin vs. control, P less than 0.01). The data support a role for cytosolic calcium in the regulation of endothelial shape change and vessel wall permeability in response to histamine.  相似文献   

10.
The cyclic GMP (cGMP) content was rapidly (greater than 30 s) increased by serotonin [5-hydroxytryptamine (5-HT)] (EC50 = 10 microM), and the increase lasted for greater than 10 min in NG108-15 cells. The 5-HT-induced elevation of cGMP level (EC50 = 10 microM) at 20 s ("fast" elevation) was inhibited by ICS 205-930 or MDL 72,222 and by Ca2+ deficiency in the reaction medium but not by organic Ca2+ antagonists. The 5-HT effect at 10 min ("slow" elevation) was not inhibited by several antagonists for 5-HT receptors of the 1A, 1B, 1C, 1D, 2, and 3 subtypes and was independent from external Ca2+ concentration. The fast and slow effects of 5-HT were similar to the effects of bradykinin and atrial natriuretic peptide (ANP), respectively, in aspects of both Ca2+ dependency and time course of the effects. Bradykinin transiently stimulated formation of inositol phosphates as well as accumulation of cGMP, a finding suggesting that intracellular Ca2+ is involved in bradykinin-induced cGMP accumulation as shown in the fast response to 5-HT. ANP, an activator of membrane-associated guanylate cyclase (mGC), slowly (approximately 60 s) increased the cGMP content (EC50 = 10 nM), a result lasting for greater than 10 min, and the effects were independent from external Ca2+, as shown in the slow response to 5-HT. 5-HT and ANP did not induce formation of inositol phosphates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Smooth muscle cells were isolated from the circular muscle layer of guinea pig stomach and permeabilized by brief exposure to saponin. Both permeabilized and intact muscle cells contracted in response to cholecystokinin octapeptide (CCK-8) and acetylcholine, but only permeabilized muscle cells contracted in response to inositol 1,4,5-trisphosphate (InsP3). The contractile response to InsP3 was prompt (peak less than 5 s), concentration-dependent (EC50-0.3 microM), and insensitive to antimycin or oligomycin. Contraction induced by either InsP3 or CCK-8 was accompanied by a concentration-dependent increase in free Ca2+ that was directly correlated with the magnitude of contraction. Both InsP3 and CCK-8 caused rapid net efflux of Ca2+ from cells preloaded with 45Ca2+. Contraction, increase in free Ca2+ concentration, and net 45Ca2+ efflux elicited by a combination of maximal concentrations of InsP3 and CCK-8 were not significantly different from those elicited by maximal concentrations of either agent alone. Repeated stimulation of single muscle cells with either InsP3 or CCK-8 in Ca2+-free medium caused eventual loss of the contractile response to all agents. The response to all agents was restored upon re-exposure of the cell to a cytosol-like concentration of Ca2+, implying equal access of InsP3 and receptor-linked agonists to the same intracellular Ca2+ store. The results demonstrate that InsP3 mimics the effects of receptor-linked agonists on contraction and mobilization of intracellular Ca2+ in permeabilized smooth muscle cells that retain the functional properties of intact smooth muscle cells and support a role for InsP3 as membrane-derived messenger responsible for mobilization of intracellular Ca2+ in smooth muscle cells.  相似文献   

12.
19F nuclear magnetic resonance is used in conjunction with 5,5'-difluoro-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBapta), a fluorinated calcium chelator, to report steady-state intracellular free calcium levels ([Ca2+]i) in populations of resting, quiescent, isolated adult heart cells. 31P nuclear magnetic resonance shows that 5FBapta-loaded cells maintain normal intracellular high-energy phosphates, pH, and free Mg2+. The intracellular free calcium concentration of well perfused, isolated heart cells is 61 +/- 5 nM, measured with 5FBapta, which has a dissociation constant (Kd) for calcium chelation of 500 nM. A similar value is obtained with Quin-MF, another fluorinated calcium chelator with Kd and maximum calcium sensitivity at 80 nM. We find that the steady-state level of intracellular free calcium is increased by decreased extra-cellular sodium concentration, omission of extracellular magnesium, decreased extracellular pH, hyperglycemia, and upon treatment with lead acetate. Further, extracellular ATP caused a large transient increase in [Ca2+]i. Thus, while heart cells maintain a very low level of intracellular free Ca2+, acute alterations in extracellular environment can cause derangement of calcium homeostasis, resulting in measurable increases in [Ca2+]i.  相似文献   

13.
It was reported that neuropeptide Y (NPY) affects cardiac and vascular smooth muscle (VSM) function probably by increasing intracellular Ca2+. In this study, using fura-2 microfluorometry and fluo-3 confocal microscopy techniques for intracellular Ca2+ measurement, we attempted to verify whether the action of NPY receptor's stimulation in heart and VSM cells modulates intracellular Ca2+ and whether this effect is mediated via the Y1 receptor type. Using spontaneously contracting single ventricular heart cells of 10-day-old embryonic chicks and the fluo-3 confocal microscopy Ca2+ measurement technique to localize cytosolic ([Ca]c) and nuclear ([Ca]n) free Ca2+ level and distribution, 10-10 M of human (h) NPY significantly (P < 0.05) increased the frequency of cytosolic and nuclear Ca2+ transients during spontaneous contraction. Increasing the concentration of hNPY (10(-9) M) did not further increase the frequency of Ca2+ transients. The L-type Ca2+ channel blocker, nifedipine (10(-5) M), significantly (P < 0.001) blocked the spontaneous rise of intracellular Ca2+ in the absence and presence of hNPY (10(-10) and 10(-9) M). However, the selective Y1 receptor antagonist, BIBP3226 (10(-6) M), significantly decreased the hNPY-induced (10(-10) and 10(-9) M) increase in the frequency of Ca2+ transients back to near the control level (P < 0.05). In resting nonworking heart and human aortic VSM cells, hNPY induced a dose-dependent sustained increase of basal resting intracellular Ca2+ with an EC50 near 10(-9) M. This sustained increase was cytosolic and nuclear and was completely blocked by the Ca2+ chelator EGTA, and was significantly decreased by the Y1 receptor antagonist BIBP3226 in both heart (P < 0.05) and VSM (P < 0.01) cells. These results strongly suggest that NPY stimulates the resting basal steady-state Ca2+ influx through the sarcolemma and induces sustained increases of cytosolic and nuclear calcium, in good part, via the activation of the sarcolemma membrane Y1 receptor type in both resting heart and VSM cells. In addition, NPY also increased the frequency of Ca2+ transients during spontaneous contraction of heart cells mainly via the activation of the Y1 receptor type, which may explain in part the active cardiovascular action of this peptide.  相似文献   

14.
Triggering the CD3/TCR complex of T lymphocytes induces a rapid rise in cytosolic free calcium followed by a slowly declining plateau. The level of this plateau depends on external pH, the more alkalinized media leading to higher values. Neither a pH-dependent binding of mAb, nor a perturbation of internal pH can account for this effect. In a sodium-free medium, or in the presence of dimethylamiloride Ca2+, elevation is accompanied by an acidification of the cells; both of them depend, to the same extent, on external calcium concentration. TPA inhibits CD3-, but not ionomycin-induced Ca2+ and H+ raises, indicating that it acts more probably on Ca2+ influx, rather than on its efflux. These results suggest that intracellular calcium could be regulated by a Ca2+/H+ ATPase which drives H+ in and Ca2+ out. In the presence of external Na+, H+ should return to the medium by the Na+/H+ exchanger.  相似文献   

15.
Pretreatment of human polymorphonuclear leukocytes with the recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) enhances leukotriene biosynthesis in response to a receptor agonist (e.g. N-formyl-methionyl-leucyl-phenylalanine, fMLP) or a Ca(2+)-ionophore (e.g. ionomycin). This priming effect could be traced back to an elevated release of arachidonic acid from the phospholipid pools and hence an increased leukotriene biosynthesis by 5-lipoxygenase. Preincubation of polymorphonuclear leukocytes with GM-CSF did not influence the basal intracellular Ca2+ level and does not enhance cytosolic free calcium after stimulation with fMLP or ionomycin. Only a small increase in the second Ca2+ phase after receptor agonist stimulation was found. However, the Ca(2+)-threshold level necessary for the liberation of arachidonic acid by phospholipase A2 was decreased from 350-400 nM calcium in untreated cells to about 250 nM calcium in primed cells. This allows phospholipase A2 to be activated by a release of calcium from intracellular stores and by ionomycin concentrations which are ineffective in untreated cells. Protein biosynthesis inhibitors like actinomycin D (10 micrograms/ml) and cycloheximide (50 micrograms/ml) had no effect on the enhanced leukotriene biosynthesis in primed cells after stimulation with ionomycin. However, staurosporine (200 nM), an inhibitor of protein kinase C totally abolished the priming effect of GM-CSF after stimulation with ionomycin. The priming effect of GM-CSF could be mimicked by phorbol myristate acetate (PMA; 1 nM) and no additive or synergistic effect was found on leukotriene biosynthesis by simultaneous pretreatment with PMA and GM-CSF and stimulation with either fMLP or ionomycin. These results provide evidence that the enhanced arachidonic acid release in GM-CSF-primed polymorphonuclear leukocytes after stimulation with either fMLP or ionomycin involves activation of protein kinase C which, by a still unknown mechanism, reduces the Ca2+ requirement of phospholipase A2.  相似文献   

16.
The effect of 5-hydroxytryptamine (5-HT) on phospholipase C (PLC)-mediated phosphoinositide (PI) hydrolysis and intracellular Ca2+ ([Ca2+]i) changes was investigated in canine cultured aorta smooth muscle cells (ASMCs). 5-HT-stimulated inositol phosphate (IP) accumulation was time and concentration dependent with a half-maximal response (pEC50) and a maximal response at 6.4 and 10 microM, n = 6, respectively. Stimulation of ASMCs by 5-HT produced an initial transient peak followed by a sustained, concentration-dependent elevation in [Ca+]i. The half-maximal response (pEC50) values of 5-HT for the peak and sustained plateau were 7.1 and 6.9, respectively. Ketanserin and mianserin (1 and 3 nM), 5-HT2A antagonists, were equipotent and had high affinity in antagonising the 5-HT-induced IP accumulation and [Ca2+]i change with pK(B) values of 8.6-9.1 and 8.6-9.4, respectively. In contrast, the concentration-effect curves of 5-HT-induced IP and [Ca2+]i responses were not shifted until the concentrations of NAN-190 and metoctopramide (5-HT1A and 5-HT3 receptor antagonists, respectively) were increased to as high as 1 microM with pK(B) values of 5.7-6.3 and 6.1-6.6, respectively, indicating that the 5-HT receptor-mediated responses had low affinity for these antagonists. Pre-treatment of ASMCs with pertussis toxin (100 ng/mL, 24 h) caused a significant inhibition of 5-HT-induced IP accumulation and [Ca2+]i change in ASMCs. Depletion of external Ca2+ or removal of Ca2+ by addition of EGTA led to a significant attenuation of IP accumulation and [Ca2+]i change induced by 5-HT. Influx of external Ca2+ was required for the 5-HT-induced responses, because Ca2+-channel blockers--verapamil, nifedipine and Ni2+--partly inhibited the 5-HT-induced IP accumulation and Ca2+ mobilisation. The sustained elevation of [Ca2+]i response to 5-HT was dependent on the presence of external Ca2+. Removal of external Ca2+ by addition of 5 mM EGTA during the sustained phase caused a rapid decline in [Ca2+]i to lower than the resting level. The sustained elevation of [Ca2+]i could then be evoked by addition of 1.8 mM Ca2+ in the continued presence of 5-HT. These results demonstrate that 5-HT directly stimulates PLC-mediated PI hydrolysis and Ca2+ mobilisation, at least in part, through a pertussis toxin-sensitive G protein in canine ASMCs. 5-HT2A receptors may be predominantly mediating IP accumulation, and subsequently IP-induced Ca2+ mobilisation may function as the transducing mechanism for 5-HT-stimulated contraction of aorta smooth muscle.  相似文献   

17.
The effect of the enantiomers of a novel 5-HT2 receptor antagonist, (+/-)-(1R,3S)-1-[2-[4-[3-(p-fluorophenyl)-1-indanyl]-piperazinyl] ethyl]-2-imidazolidinone, was studied on serotonin (5-HT), noradrenaline (NA), potassium (K+), and calcium (Ca2+)-induced contractions in isolated rat thoracic aorta. The enantiomers shifted the 5-HT, NA, K+, and Ca2+ concentration-response curves to the right in a concentration-dependent manner and depressed the maximal contractile responses. The (+)-enantiomer was a far more potent inhibitor of 5-HT-induced contractions than the (-)-enantiomer. The (+)-enantiomer and phentolamine, both at 10(-6) M, had equal inhibitory effects on NA-evoked contractions. The (+)-enantiomer was again more potent inhibiting NA-induced contractions than the (-)-enantiomer. Both enantiomers had an equieffective inhibitory effect on K+ and Ca2(+)-induced contractions. The results show that the 5-HT and alpha-adrenoceptor antagonism of the two enantiomers is stereoselective, the (+)-enantiomer being more potent than the (-)-enantiomer. In contrast the enantiomers had equal, nonstereoselective inhibitory effects on K+ and Ca2(+)-evoked contractions.  相似文献   

18.
The development of sarcoplasmic reticulum membranes was studied in vivo and in tissue culture in chicken pectoralis muscle cells. The concentration of the calcium- and magnesium-activated ATPase measured by selective labeling of the enzyme with [32P]ATP in whole muscle homogenates was found to increase in developing chicken pectoralis muscle in vivo from 0.01 nmol/mg of protein in 12-day embryos to 0.3 to 0.4 nmol/mg of protein in 1-month-old chicks, where it constitutes about 3% of the total protein content of muscle. In cultured muscle cells the concentration of calcium-sensitive phosphoprotein increased from 0.015 nmol/mg of protein at 2 days to 0.04 to 0.05 nmol/mg of protein after 5 days of culture. This amount represents about 0.5% of the protein content of the muscle cells. The accumulation of Ca2+ transport ATPase began during fusion and continued with a linear rate during 8 days of culture. The density of 75 A intramembranous particles seen by freeze-etch electron microscopy on fracture faces of sarcoplasmic reticulum membranes is about 4,000/mum2 in adult chick pectoralis muscle but only 400/mum2 in cultured muscle cells in rough proportion to the concentration of Ca2+-sensitive phosphoprotein. The Ca2+, Na+, and K+ concentration of the medium and addition of ouabain, caffeine, or the calcium ionophores A23187 and X537A sharply influence the concentration of calcium transport ATPase in cultured muscle cells, parallel with their effect upon cell fusion and growth. These observations are consistent with the proposition that the gene expression leading to the accumulation of Ca2+ transport ATPase during development in culture may be regulated by intracellular ion concentrations.  相似文献   

19.
We have investigated hypertension-associated alterations in intracellular cations in the kidney by measuring intracellular pH, free Mg2+, free Ca2+, and Na+ concentrations in perfused normotensive and hypertensive rat (8-14 weeks old) kidneys using 31P, 19F, and double quantum-filtered (DQ) 23Na NMR. The effects of both anoxia and ischemia on the 23Na DQ signal confirmed its ability to detect changes in intracellular Na+. However, there was a sizable contribution of the extracellular Na+ to the 23Na DQ signal of the kidney. The intracellular free Ca2+ concentration, measured using 19F NMR and 5,5'difluoro-1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid, also increased dramatically during ischemia; the increase could be partly reversed by reperfusion. No significant differences were found between normotensive and hypertensive kidneys in the ATP level, intracellular pH, intracellular free Mg2+, and the 23Na DQ signal or in the extent of the extracellular contribution to the 23Na DQ signal. Oxygen consumption rates were also similar for the normotensive (5.02 +/- 0.46 mumol of O2/min/g) and hypertensive (5.47 +/- 0.42 mumol O2/min/g) rat kidneys. The absence of a significant difference in intracellular pH, Na+ concentration, and oxygen consumption between normotensive and hypertensive rat kidneys suggests that an alteration in the luminal Na+/H+ antiport activity in hypertension is unlikely. However, a highly significant increase (64%, p less than 0.01) in free Ca2+ concentration was found in perfused kidneys from hypertensive rats (557 +/- 48 nM, blood pressure = 199 +/- 5 mmHg, n = 6) compared with normotensive rats (339 +/- 21 nM, blood pressure = 134 +/- 6, n = 4) indicating altered renal calcium homeostasis in essential hypertension. An increase in intracellular free Ca2+ concentration without an accompanying change in the intracellular Na+ suggests, among many possibilities, that the Ca2+/Mg(2+)-ATPase may be inhibited in the hypertensive renal tissue.  相似文献   

20.
Mouse C3H 10T1/2 cells exhibited a two- to threefold increase in the concentration of free Ca2+ during heating at 45 degrees C. The increase was maximal for a heat dose which was still in the shoulder region of the survival curve. The increase was fully reversible in heat-sterilized cells. By changing the concentration of extracellular Ca2+, it was possible to modulate the concentration of intracellular free Ca2+ in heated cells. Lowering the extracellular concentration to 0.03 mM reduced the baseline concentration of intracellular free Ca2+, and prevented it from increasing in heated cells to a level exceeding that of nonheated cells incubated in medium containing 2.0 or 5.0 mM Ca2+. Raising the concentration of extracellular Ca2+ to 15.0 mM raised the baseline, and resulted in a heat-induced increase in free Ca2+ which was twofold higher than that of cells heated in medium containing 2.0 or 5.0 mM Ca2+. An elevated concentration of intracellular free Ca2+ during and after heating did not potentiate thermal killing, nor did a reduced concentration during and after heating mitigate killing. Furthermore, the data argue against a heat-induced increase in free Ca2+ to some threshold level, which potentiates cell killing by some other parameter. In addition, cells heat-shocked in either 0.03 or 5.0 mM extracellular Ca2+, and then incubated in the same concentration for 12 h at 37 degrees C, developed quantitatively similar amounts of tolerance to a second heating. The data suggest that the concentration of intracellular free Ca2+ does not play a critical role in thermal killing or the induction and development of thermotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号