首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marvelous background rejection in total internal reflection fluorescence microscopy (TIR-FM) has made it possible to visualize single-fluorophores in living cells. Cell signaling proteins including peptide hormones, membrane receptors, small G proteins, cytoplasmic kinases as well as small signaling compounds have been conjugated with single chemical fluorophore or tagged with green fluorescent proteins and visualized in living cells. In this review, the reasons why single-molecule analysis is essential for studies of intracellular protein systems such as cell signaling system are discussed, the instrumentation of TIR-FM for single-molecule imaging in living cells is explained, and how single molecule visualization has been used in cell biology is illustrated by way of two examples: signaling of epidermal growth factor in mammalian cells and chemotaxis of Dictyostelium amoeba along a cAMP gradient. Single-molecule analysis is an ideal method to quantify the parameters of reaction dynamics and kinetics of unitary processes within intracellular protein systems. Knowledge of these parameters is crucial for the understanding of the molecular mechanisms underlying intracellular events, thus single-molecule imaging in living cells will be one of the major technologies in cellular nanobiology.  相似文献   

2.
Guanine-rich oligonucleotides often show a strong tendency to form supramolecular architecture, the so-called G-quadruplex structure. Because of the biological significance, it is now considered to be one of the most important conformations of DNA. Here, we describe the direct visualization and single-molecule analysis of the formation of a tetramolecular G-quadruplex in KCl solution. The conformational changes were carried out by incorporating two duplex DNAs, with G–G mismatch repeats in the middle, inside a DNA origami frame and monitoring the topology change of the strands. In the absence of KCl, incorporated duplexes had no interaction and laid parallel to each other. Addition of KCl induced the formation of a G-quadruplex structure by stably binding the duplexes to each other in the middle. Such a quadruplex formation allowed the DNA synapsis without disturbing the duplex regions of the participating sequences, and resulted in an X-shaped structure that was monitored by atomic force microscopy. Further, the G-quadruplex formation in KCl solution and its disruption in KCl-free buffer were analyzed in real-time. The orientation of the G-quadruplex is often difficult to control and investigate using traditional biochemical methods. However, our method using DNA origami could successfully control the strand orientations, topology and stoichiometry of the G-quadruplex.  相似文献   

3.
Quantitation of poly(A)-RNA, time-dependent visualization of intracellular poly(A)(+)-RNA localization in living mammalian cells, and time-resolved intracellular binding dynamics of molecular beacons at the single-molecule level using a fluorescence resonance energy transfer (FRET)-based molecular beacon are described. FRET-based molecular beacons were designed as poly(A)-targeting probes to be oligonucleotides that contained Cy5 and Cy3 fluorescent dyes at the strand ends and a poly(A)-targeting sequence inside the strand. Our ratiometric analysis using poly(A)-targeting probes allowed for highly specific and wide-ranging detection (from 1.25nM to 0.5μM) of poly(A)-RNA, as well as for determination of K(d) values, and revealed a distribution of the probe itself and localization of the target RNA sequence in cells. Furthermore, time-dependent FRET-mediated fluorescence changes at the single-molecule level caused by the folding-induced gradual conformation changes in live cells were observed.  相似文献   

4.
Chemical modification of proteins has a rich history in biochemistry and chemical biology. However, studies of membrane protein function, especially in cases where functional expression is low and purification and reconstitution are not feasible, present unique challenges. Heptahelical G-protein-coupled receptors (GPCRs) are a particularly important class of cell-surface receptors that represent targets of more than a quarter of all therapeutic drugs. Understanding with chemical precision how GPCRs function in biological membranes remains a central problem in biology. Recently a number of creative strategies have been developed that allow site-specific attachment of chemical probes or tags directly on expressed receptors or on biologically active peptide ligands or substrates. One particularly important advance is the genetic encoding of unnatural amino acids (UAAs) with unique small bioorthogonal tags using amber codon suppression in mammalian cells. This method should allow site-specific labeling of GPCRs with various molecular probes to facilitate cell-based studies of protein-protein or protein-ligand interactions and the visualization of conformational changes using fluorescence spectroscopy or single-molecule imaging.  相似文献   

5.
Imaging of biological samples using fluorescence microscopy has advanced substantially with new technologies to overcome the resolution barrier of the diffraction of light allowing super-resolution of live samples. There are currently three main types of super-resolution techniques – stimulated emission depletion (STED), single-molecule localization microscopy (including techniques such as PALM, STORM, and GDSIM), and structured illumination microscopy (SIM). While STED and single-molecule localization techniques show the largest increases in resolution, they have been slower to offer increased speeds of image acquisition. Three-dimensional SIM (3D-SIM) is a wide-field fluorescence microscopy technique that offers a number of advantages over both single-molecule localization and STED. Resolution is improved, with typical lateral and axial resolutions of 110 and 280 nm, respectively and depth of sampling of up to 30 µm from the coverslip, allowing for imaging of whole cells. Recent advancements (fast 3D-SIM) in the technology increasing the capture rate of raw images allows for fast capture of biological processes occurring in seconds, while significantly reducing photo-toxicity and photobleaching. Here we describe the use of one such method to image bacterial cells harboring the fluorescently-labelled cytokinetic FtsZ protein to show how cells are analyzed and the type of unique information that this technique can provide.  相似文献   

6.
Molecular motors such as kinesin and dynein use the energy derived from ATP hydrolysis to walk processively along microtubule tracks and transport various cargoes inside the cell. Recent advancements in fluorescent protein (FP) research enable motors to be fluorescently labeled such that single molecules can be visualized inside cells in multiple colors. The performance of these fluorescent tags can vary depending on their spectral properties and a natural tendency for oligomerization. Here we present a survey of different fluorescent tags fused to kinesin-1 and studied by single-molecule motility assays of mammalian cell lysates. We tested eight different FP tags and found that seven of them display sufficient fluorescence intensity and photostability to visualize motility events. Although none of the FP tags interfere with the enzymatic properties of the motor, four of the tags (EGFP, monomeric EGFP, tagRFPt, and mApple) cause aberrantly long motor run lengths. This behavior is unlikely to be due to electrostatic interactions and is probably caused by tag-dependent oligomerization events that appear to be facilitated by fusion to the dimeric kinesin-1. We also compared the single-molecule performance of various fluorescent SNAP and HALO ligands. We found that although both green and red SNAP ligands provide sufficient fluorescent signal, only the tetramethyl rhodamine (TMR) HALO ligand provides sufficient signal for detection in these assays. This study will serve as a valuable reference for choosing fluorescent labels for single-molecule motility assays.  相似文献   

7.
Single-molecule imaging has gained momentum to quantify the dynamics of biomolecules in live cells, as it provides direct real-time measurements of various cellular activities under their physiological environment. Yeast, a simple and widely used eukaryote, serves as a good model system to quantify single-molecule dynamics of various cellular processes because of its low genomic and cellular complexities, as well as its facile ability to be genetically manipulated. In the past decade, significant developments have been made regarding the intracellular labeling of biomolecules (proteins, mRNA, fatty acids), the microscopy setups to visualize single-molecules and capture their fast dynamics, and the data analysis pipelines to interpret such dynamics. In this review, we summarize the current state of knowledge for the single-molecule imaging in live yeast cells to provide a ready reference for beginners. We provide a comprehensive table to demonstrate how various labs tailored the imaging regimes and data analysis pipelines to estimate various biophysical parameters for a variety of biological processes. Lastly, we present current challenges and future directions for developing better tools and resources for single-molecule imaging in live yeast cells.  相似文献   

8.
Ever since Hershey and Chase used phages to establish DNA as the carrier of genetic information in 1952, the precise mechanisms of phage DNA translocation have been a mystery. Although bulk measurements have set a timescale for in vivo DNA translocation during bacteriophage infection, measurements of DNA ejection by single bacteriophages have only been made in vitro. Here, we present direct visualization of single bacteriophages infecting individual Escherichia coli cells. For bacteriophage λ, we establish a mean ejection time of roughly 5 min with significant cell-to-cell variability, including pausing events. In contrast, corresponding in vitro single-molecule ejections are more uniform and finish within 10 s. Our data reveal that when plotted against the amount of DNA ejected, the velocity of ejection for two different genome lengths collapses onto a single curve. This suggests that in vivo ejections are controlled by the amount of DNA ejected. In contrast, in vitro DNA ejections are governed by the amount of DNA left inside the capsid. This analysis provides evidence against a purely intrastrand repulsion-based mechanism and suggests that cell-internal processes dominate. This provides a picture of the early stages of phage infection and sheds light on the problem of polymer translocation.  相似文献   

9.
The fate of transplastomic (chloroplast genome contains the transgene) tobacco plant DNA in planta was studied when the plant leaves were subjected to decay conditions simulating those encountered naturally, including grinding, incubation with cellulase or enzymes produced by Erwinia chrysanthemi, and attack by the plant pathogen Ralstonia solanacearum. Direct visualization of DNA on agarose gels, gene extraction yield (the number of amplifiable aadA sequences in extracted plant DNA), and the frequency that recipient bacteria can be transformed by plant DNA were used to evaluate the quality and quantity of plant DNA and the transgene. These measurements were used to monitor the physical and biological degradation of DNA inside decaying plant tissues. Our results indicate that while most of the DNA will be degraded inside plant cells, sufficient DNA persists to be released into the soil.  相似文献   

10.
The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the duplication of genome in eukaryotes. Here, we describe a single-molecule assay that allows replication of DNA attached to the functionalized surface of a microfluidic flow cell in a soluble Xenopus leavis egg extract replication system and subsequent visualization of replication products via fluorescence microscopy. We also explain a method for detection of replication proteins, through fluorescently labeled antibodies, on partially replicated DNA immobilized at both ends to the surface.  相似文献   

11.
Triller A  Choquet D 《Neuron》2008,59(3):359-374
Single-molecule approaches give access to the full distribution of molecule behaviors and overcome the averaging intrinsic to bulk measurement methods. They allow access to complex processes where a given molecule can have heterogeneous properties over time. Recent developments in single-molecule imaging technologies have been followed by their wide application in cellular biology and are leading to the unraveling of new mechanisms related to molecular movements. They are shaping new concepts in the dynamic equilibria of complex biological macromolecular assemblies such as synapses. These advances were made possible thanks to improvements in visualization approaches combined with new strategies to label proteins with nanoprobes. In this primer, we will review the different approaches used to track single molecules in live neurons, compare them to bulk measurements, and discuss the different concepts that have emerged from their application to synaptic biology.  相似文献   

12.
13.
Less than a decade old, single-molecule fluorescence of nucleic acids has rapidly become an important tool in the arsenal of biological probes. A variety of novel approaches to investigate conformational dynamics, catalytic mechanisms, folding pathways and protein-nucleic-acid interactions have recently been devised for nucleic acids using this technique. Combined with biomechanical tools and ensemble measurements, single-molecule fluorescence methods extend our ability to observe and understand biomolecules and complex biological processes.  相似文献   

14.
Fluorescence resonance energy transfer (FRET) is a high-resolution technique that allows the characterization of spatial and temporal properties of biological structures and mechanisms. In this work, we developed an in silico single-molecule FRET methodology to study the dynamics of fluorophores inside lipid rafts. We monitored the fluorescence of a single acceptor molecule in the presence of several donor molecules. By looking at the average fluorescence, we selected events with single acceptor and donor molecules, and we used them to determine the raft size in the range of 5–16 nm. We conclude that our method is robust and insensitive to variations in the diffusion coefficient, donor density, or selected fluorescence threshold.  相似文献   

15.
Protein diffusion is crucial for understanding the formation of protein complexes in vivo and has been the subject of many fluorescence microscopy studies in cells; however, such microscopy efforts are often limited by low sensitivity and resolution. During the past decade, these limitations have been addressed by new super-resolution imaging methods, most of which rely on single-particle tracking and single-molecule detection; these methods are revolutionizing our understanding of molecular diffusion inside bacterial cells by directly visualizing the motion of proteins and the effects of the local and global environment on diffusion. Here we review key methods that made such experiments possible, with particular emphasis on versions of single-molecule tracking based on photo-activated fluorescent proteins. We also discuss studies that provide estimates of the time a diffusing protein takes to locate a target site, as well as studies that examined the stoichiometries of diffusing species, the effect of stable and weak interactions on diffusion, and the constraints of large macromolecular structures on the ability of proteins and their complexes to access the entire cytoplasm.  相似文献   

16.
Microalgae are considered a promising source of oil for biodiesel production. This work reports an estimation method of oil content inside living microalgal cells by visualization and image processing techniques. This approach was used to analyze the time course of oil accumulation patterns in Nile Red-stained microalgal cells of Scenedesmus sp. cultivated in nitrogen-deficient medium used to induce oil accumulation in microalgal cells. Nile Red staining is a widely used technique for studying oil content of microalgal cells. The intracellular oil content was estimated by mathematically evaluating the oil volume inside the stained cell. This novel visualization approach has the potential to be used in ex vivo studies of oil content at the level of single microalgal cells. This method can also be applied to other types of oil-producing microorganisms because of its accuracy, precision, and reduction in the time and effort required for optimization.  相似文献   

17.
Combined with the availability of highly purified, fluorescently labeled in vitro translation systems, the advent of single-molecule fluorescence imaging has ushered in a new era in high-resolution mechanistic studies of ribosome-catalyzed protein synthesis, or translation. Together with ensemble biochemical investigations of translation and structural studies of functional ribosomal complexes, in vitro single-molecule fluorescence imaging of protein synthesis is providing unique mechanistic insight into this fundamental biological process. More recently, rapidly evolving breakthroughs in fluorescence-based molecular imaging in live cells with sub-diffraction-limit spatial resolution and ever-increasing temporal resolution provide great promise for conducting mechanistic studies of translation and its regulation in living cells. Here we review the remarkable recent progress that has been made in these fields, highlight important mechanistic insights that have been gleaned from these studies thus far, and discuss what we envision lies ahead as these approaches continue to evolve and expand to address increasingly complex mechanistic and regulatory aspects of translation.  相似文献   

18.
19.
MicroRNAs (miRNAs) associate with components of the RNA-induced silencing complex (RISC) to assemble on mRNA targets and regulate protein expression in higher eukaryotes. Here we describe a method for the intracellular single-molecule, high-resolution localization and counting (iSHiRLoC) of miRNAs. Microinjected, singly fluorophore-labelled, functional miRNAs were tracked within diffusing particles, a majority of which contained single such miRNA molecules. Mobility and mRNA-dependent assembly changes suggest the existence of two kinetically distinct pathways for miRNA assembly, revealing the dynamic nature of this important gene regulatory pathway. iSHiRLOC achieves an unprecedented resolution in the visualization of functional miRNAs, paving the way to understanding RNA silencing through single-molecule systems biology.  相似文献   

20.
The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号