首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stochastic gating of ion channels introduces noise to membrane currents in cardiac muscle cells (myocytes). Since membrane currents drive membrane potential, noise thereby influences action potential duration (APD) in myocytes. To assess the influence of noise on APD, membrane potential is in this study formulated as a stochastic process known as a diffusion process, which describes both the current-voltage relationship and voltage noise. In this framework, the response of APD voltage noise and the dependence of response on the shape of the current-voltage relationship can be characterized analytically. We find that in response to an increase in noise level, action potential in a canine ventricular myocytes is typically prolonged and that distribution of APDs becomes more skewed towards long APDs, which may lead to an increased frequency of early after-depolarization formation. This is a novel mechanism by which voltage noise may influence APD. The results are in good agreement with those obtained from more biophysically-detailed mathematical models, and increased voltage noise (due to gating noise) may partially underlie an increased incidence of early after-depolarizations in heart failure.  相似文献   

2.
We tested whether close coupling exists between mitochondria and sarcolemma by monitoring whole cell ATP-sensitive K(+) (K(ATP)) current (I(K,ATP)) as an index of subsarcolemmal energy state during mitochondrial perturbation. In rabbit ventricular myocytes, either pinacidil or the mitochondrial uncoupler dinitrophenol (DNP), which rapidly switches mitochondria from net ATP synthesis to net ATP hydrolysis, had little immediate effect on I(K,ATP). In contrast, in the presence of pinacidil, exposure to 100 microM DNP rapidly activated I(K,ATP) with complex kinetics consisting of a quick rise [time constant of I(K,ATP) increase (tau) = 0.13 +/- 0.01 min], an early partial recovery (tau = 0.43 +/- 0.04 min), and then a more gradual increase. This DNP-induced activation of I(K,ATP) was reversible and accompanied by mitochondrial flavoprotein oxidation. The F(1)F(0)-ATPase inhibitor oligomycin abolished the DNP-induced activation of I(K,ATP). The initial rapid rise in I(K,ATP) was blunted by atractyloside (an adenine nucleotide translocator inhibitor), leaving only a slow increase (tau = 0.66 +/- 0.17 min, P < 0.01). 2,4-Dinitrofluorobenzene (a creatine kinase inhibitor) slowed both the rapid rise (tau = 0.20 +/- 0.01 min, P < 0.05) and the subsequent declining phase (tau = 0.88 +/- 0.19 min, P < 0.05). From single K(ATP) channel recordings, we excluded a direct effect of DNP on K(ATP) channels. Taken together, these results indicate that rapid changes in F(1)F(0)-ATPase function dramatically alter subsarcolemmal energy charge, as reported by pinacidil-primed K(ATP) channel activity, revealing cross-talk between mitochondria and sarcolemma. The effects of mitochondrial ATP hydrolysis on sarcolemmal K(ATP) channels can be rationalized by reversal of F(1)F(0)-ATPase and the facilitation of coupling by the creatine kinase system.  相似文献   

3.
Z Qu  D Chung 《PloS one》2012,7(8):e43587
In normal cardiac myocytes, the action potential duration (APD) is several hundred milliseconds. However, experimental studies showed that under certain conditions, APD could be excessively long (or ultralong), up to several seconds. Unlike the normal APD, the ultralong APD increases sensitively with pacing cycle length even when the pacing rate is very slow, exhibiting a sensitive slow rate-dependence. In addition, these long action potentials may or may not exhibit early afterdepolarizations (EADs). Although these phenomena are well known, the underlying mechanisms and ionic determinants remain incompletely understood. In this study, computer simulations were performed with a simplified action potential model. Modifications to the L-type calcium current (I(Ca,L)) kinetics and the activation time constant of the delayed rectifier K current were used to investigate their effects on APD. We show that: 1) the ultralong APD and its sensitive slow rate-dependence are determined by the steady-state window and pedestal I(Ca,L) currents and the activation speed and the recovery of the delayed rectifier K current; 2) whether an ultralong action potential exhibits EADs or not depends on the kinetics of I(Ca,L); 3) increasing inward currents elevates the plateau voltage, which in general prolongs APD, however, this can also shorten APD when the APD is already ultralong under certain conditions; and 4) APD alternans occurs at slow pacing rates due to the sensitive slow rate-dependence and the ionic determinants are different from the ones causing APD alternans at fast heart rates.  相似文献   

4.
The objective of the present study was to investigate the role of delta(1)-opioid receptors in mediating cardioprotection in isolated chick cardiac myocytes and to investigate whether protein kinase C and mitochondrial ATP-sensitive K(+) (K(ATP)) channels act downstream of the delta(1)-opioid receptor in mediating this beneficial effect. A 5-min preexposure to the selective delta(1)-opioid receptor agonist (-)-TAN-67 (1 microM) resulted in less myocyte injury during the subsequent prolonged ischemia compared with untreated myocytes. 7-Benzylidenenaltrexone, a selective delta(1)-opioid receptor antagonist, completely blocked the cardioprotective effect of (-)-TAN-67. Naltriben methanesulfonate, a selective delta(2)-opioid receptor antagonist, had only a slight inhibitory effect on (-)-TAN-67-mediated cardioprotection. Nor-binaltorphimine dihydrochloride, a kappa-opioid receptor antagonist, did not affect (-)-TAN-67-mediated cardioprotection. The protein kinase C inhibitor chelerythrine and the K(ATP) channel inhibitors glibenclamide, a nonselective K(ATP) antagonist, and 5-hydroxydecanoic acid, a mitochondrial selective K(ATP) antagonist, reversed the cardioprotective effect of (-)-TAN-67. These results suggest that the delta(1)-opioid receptor is present on cardiac myocytes and mediates a potent cardioprotective effect via protein kinase C and the mitochondrial K(ATP) channel.  相似文献   

5.
Control of contraction and relaxation by membrane potential was investigated in voltage-clamped guinea pig ventricular myocytes at 37 degrees C. Depolarization initiated phasic contractions, followed by sustained contractions that relaxed with repolarization. Corresponding Ca(2+) transients were observed with fura 2. Sustained responses were ryanodine sensitive and exhibited sigmoidal activation and deactivation relations, with half-maximal voltages near -46 mV, which is characteristic of the voltage-sensitive release mechanism (VSRM) for sarcoplasmic reticulum Ca(2+). Inactivation was not detected. Sustained responses were insensitive to inactivation or block of L-type Ca(2+) current (I(Ca-L)). The voltage dependence of sustained responses was not affected by changes in intracellular or extracellular Na(+) concentration. Furthermore, sustained responses were not inhibited by 2 mM Ni(2+). Thus it is improbable that I(Ca-L) or Na(+)/Ca(2+) exchange generated these sustained responses. However, rapid application of 200 microM tetracaine, which blocks the VSRM, strongly inhibited sustained contractions. Our study indicates that the VSRM includes both a phasic inactivating and a sustained noninactivating component. The sustained component contributes both to initiation and relaxation of contraction.  相似文献   

6.
Heart rate is an essential determinant of cardiac performance. In rat ventricular myocytes, a sudden increase in rate yields to a prolongation of the action potential duration (APD). The mechanism underlying this prolongation is controversial: it has been proposed that the longer APD is due to either: (1) a decrease in K+ currents only or (2) an increase in Ca2+ current only. The aim of this study was to quantitatively investigate the contribution of Ca2+ and K+ currents in the adaptation of APD to pacing rate. Simulation using a mathematical model of ventricular rat cardiac cell model [Pandit, S.V., Clark, R.B., Giles, W.R., Demir, S.S., 2001. A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81, 3029–3051] predicted a role in the prolongation of APD for K+ currents only. In patch clamp experiments, increasing the pacing rate leads to a significant increase in APD in both control and detubulated myocytes, although it was more marked in control than detubulated myocytes. Supporting the model prediction, we observed that increasing stimulation frequency leads to a decrease in K+ currents in voltage clamped rat ventricular myocytes (square and action potential waveforms), and to a similar extent in both cell types. We have also observed that frequency-dependent facilitation of Ca2+ current occurred in control cells but not in detubulated cells (square and action potential waveforms). From these experiments, we calculated that the relative contribution of Ca2+ and K+ currents to the longer APD following an increase in pacing rate is 65% and 35%, respectively. Therefore, in contrast to the model prediction, Ca2+ current has a significant role in the adaptation of APD to pacing rate. Finally, we have introduced a simplistic modification to the Pandit's model to account for the frequency-dependent facilitation of Ca2+ current.  相似文献   

7.
8.
The properties of the autonomically regulated chloride current (ICl) were studied in isolated guinea pig ventricular myocytes. This current was elicited upon exposure to isoproterenol (ISO) and reversed upon concurrent exposure to acetylcholine (ACh). ICl was time independent and exhibited outward rectification. The responses to ISO and ACh could be blocked by propranolol and atropine, respectively, and ICl was also elicited by forskolin, 8-bromoadenosine 3',5'-cyclic monophosphate, and 3-isobutyl-l-methylxanthine, indicating that the current is regulated through a cAMP-dependent pathway. The reversal potential of the ISO- induced current followed the predicted chloride equilibrium potential, consistent with it being carried predominantly by Cl-. Activation of ICl produced changes in the resting membrane potential and action potential duration, which were Cl- gradient dependent. These results indicate that under physiological conditions ICl may play an important role in regulating action potential duration and resting membrane potential in mammalian cardiac myocytes.  相似文献   

9.
Zhou HY  Han CY  Wang XL 《生理学报》2006,58(2):136-140
心肌缺血损伤过程中,胞内Na^+、ATP及pH都出现明显变化。钠/钙交换对心肌细胞的钙平衡起重要的调节作用。本实验采用膜片钳全细胞记录豚鼠心室肌细胞钠/钙交换电流,研究温度和胞内Na^+、ATP及pH对钠/钙交换双向电流的影响。结果表明,温度从22℃升至34℃,钠/钙交换电流增大约4倍,而pH值的改变对钠/钙交换双向电流没有明显的影响。在22~24℃时,同时耗竭胞内ATP和胞内酸化对钠/钙交换双向转运功能影响程度小;而在34—37℃时,同时耗竭胞内ATP和胞内酸化能抑制钠/钙交换双向电流的外向和内向成分,且内向成分抑制程度高于外向成分抑制程度。表明同时耗竭胞内ATP和胞内酸化对钠/钙交换的作用具有温度依赖性。胞内Na^+超载能使钠/钙交换电流的外向成分增加,但不增加或减少内向电流(即正向转运)成分。因此,胞内酸化及耗竭胞内ATP损伤细胞排钙机制和胞内钠超载通过钠/钙反向交换引起钙内流是引起心肌细胞钙超载的两个独立的重要因素。  相似文献   

10.
11.
It is well known that cardiac action potentials are shortened by increasing the external calcium concentration (Cao). The shortening is puzzling since Ca ions are thought to carry inward current during the plateau. We therefore studied the effects of Cao on action potentials and membrane currents in short Purkinje fiber preparations. Two factors favor the earlier repolarization. First, calcium-rich solutions generally raise the plateau voltage; in turn, the higher plateau level accelerates time- and voltage-dependent current changes which trigger repolarization. Increases in plateau height imposed by depolarizing current consistently produced shortening of the action potential. The second factor in the action of Ca ions involves iK1, the background K current (inward rectifier). Raising Cao enhances iK1 and thus favors faster repolarization. The Ca-sensitive current change was identified as an increase in iK1 by virtue of its dependence on membrane potential and Ko. A possible third factor was considered and ruled out: unlike epinephrine, calcium-rich solutions do not enhance slow outward plateau current, ikappa. These results are surprising in showing that calcium ions and epinephrine act quite differently on repolarizing currents, even though they share similar effects on the height and duration of the action potential.  相似文献   

12.
The K(ATP) channel is an important player in vascular tone regulation. Its opening and closure lead to vasodilation and vasoconstriction, respectively. Such functions may be disrupted in oxidative stress seen in a variety of cardiovascular diseases, while the underlying mechanism remains unclear. Here, we demonstrated that S-glutathionylation was a modulation mechanism underlying oxidant-mediated vascular K(ATP) channel regulation. An exposure of isolated mesenteric rings to hydrogen peroxide (H(2)O(2)) impaired the K(ATP) channel-mediated vascular dilation. In whole-cell recordings and inside-out patches, H(2)O(2) or diamide caused a strong inhibition of the vascular K(ATP) channel (Kir6.1/SUR2B) in the presence, but not in the absence, of glutathione (GSH). Similar channel inhibition was seen with oxidized glutathione (GSSG) and thiol-modulating reagents. The oxidant-mediated channel inhibition was reversed by the reducing agent dithiothreitol (DTT) and the specific deglutathionylation reagent glutaredoxin-1 (Grx1). Consistent with S-glutathionylation, streptavidin pull-down assays with biotinylated glutathione ethyl ester (BioGEE) showed incorporation of GSH to the Kir6.1 subunit in the presence of H(2)O(2). These results suggest that S-glutathionylation is an important mechanism for the vascular K(ATP) channel modulation in oxidative stress.  相似文献   

13.
To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049–C2060, 2001). We incorporated equations for Ca2+ and Mg2+ buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K+ channel and L-type Ca2+ channel, Na+-K+-ATPase, and sarcolemmal and sarcoplasmic Ca2+-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different INa, Ito, IKr, IKs, and IKp channel properties. The results indicate that the ATP-sensitive K+ channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, Pi, total Mg2+, Na+, K+, Ca2+, and pH diastolic levels are normal. The model predicts that only KATP ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the KATP channel opening through metabolic interactions with the endogenous PI cascade (PIP2, PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes. ATP-sensitive K+ channel; creatine and adenylate kinase reactions; phosphatidylinositol phosphates; heart; mathematical model  相似文献   

14.
The cardiovascular system operates under demands ranging from conditions of rest to extreme stress. One mechanism of cardiac stress tolerance is action potential duration shortening driven by ATP-sensitive potassium (KATP) channels. KATP channel expression has a significant physiologic impact on action potential duration shortening and myocardial energy consumption in response to physiologic heart rate acceleration. However, the effect of reduced channel expression on action potential duration shortening in response to severe metabolic stress is yet to be established. Here, transgenic mice with myocardium-specific expression of a dominant negative KATP channel subunit were compared with littermate controls. Evaluation of KATP channel whole cell current and channel number/patch was assessed by patch clamp in isolated ventricular cardiomyocytes. Monophasic action potentials were monitored in retrogradely perfused, isolated hearts during the transition to hypoxic perfusate. An 80–85% reduction in cardiac KATP channel current density results in a similar magnitude, but significantly slower rate, of shortening of the ventricular action potential duration in response to severe hypoxia, despite no significant difference in coronary flow. Therefore, the number of functional cardiac sarcolemmal KATP channels is a critical determinant of the rate of adaptation of myocardial membrane excitability, with implications for optimization of cardiac energy consumption and consequent cardioprotection under conditions of severe metabolic stress.  相似文献   

15.
Isolation of the rapidly activating delayed rectifier potassium current (I(Kr)) from other cardiac currents has been a difficult task for quantitative study of this current. The present study was designed to separate I(Kr) using Cs+ in cardiac myocytes. Cs+ have been known to block a variety of K+ channels, including many of those involved in the cardiac action potential such as inward rectifier potassium current I(K1) and the transient outward potassium current I(to). However, under isotonic Cs+ conditions (135 mM Cs+), a significant membrane current was recorded in isolated rabbit ventricular myocytes. This current displayed the voltage-dependent onset of and recovery from inactivation that are characteristic to I(Kr). Consistently, the current was selectively inhibited by the specific I(Kr) blockers. The biophysical and pharmacological properties of the Cs+-carried human ether-a-go-go-related gene (hERG) current were very similar to those of the Cs+-carried I(Kr) in ventricular myocytes. The primary sequence of the selectivity filter in hERG was in part responsible for the Cs+ permeability, which was lost when the sequence was changed from GFG to GYG, characteristic of other, Cs+-impermeable K+ channels. Thus the unique high Cs+ permeability in I(Kr) channels provides an effective way to isolate I(Kr) current. Although the biophysical and pharmacological properties of the Cs+-carried I(Kr) are different from those of the K+-carried I(Kr), such an assay enables I(Kr) current to be recorded at a level that is large enough and sufficiently robust to evaluate any I(Kr) alterations in native tissues in response to physiological or pathological changes. It is particularly useful for exploring the role of reduction of I(Kr) in arrhythmias associated with heart failure and long QT syndrome due to the reduced hERG channel membrane expression.  相似文献   

16.
We have previously reported that epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolites of arachidonic acid, are potent stereospecific activators of the cardiac K(ATP) channel. The epoxide group in EET is critical for reducing channel sensitivity to ATP, thereby activating the channel. This study is to identify the molecular sites on the K(ATP) channels for EET-mediated activation. We investigated the effects of EETs on Kir6.2delta C26 with or without the coexpression of SUR2A and on Kir6.2 mutants of positively charged residues known to affect channel activity coexpressed with SUR2A in HEK293 cells. The ATP IC50 values were significantly increased in Kir6.2 R27A, R50A, K185A, and R201A but not in R16A, K47A, R54A, K67A, R192A, R195A, K207A, K222A, and R314A mutants. Similar to native cardiac K(ATP) channel, 5 microM 11,12-EET increased the ATP IC50 by 9.6-fold in Kir6.2/SUR2A wild type and 8.4-fold in Kir6.2delta C26. 8,9- and 14,15-EET regioisomers activated the Kir6.2 channel as potently as 11,12-EET. 8,9- and 11,12-EET failed to change the ATP sensitivity of Kir6.2 K185A, R195A, and R201A, whereas their effects were intact in the other mutants. 14,15-EET had a similar effect with K185A and R201A mutants, but instead of R195A, it failed to activate Kir6.2R192A. These results indicate that activation of Kir6.2 by EETs does not require the SUR2A subunit, and the region in the Kir6.2 C terminus from Lys-185 to Arg-201 plays a critical role in EET-mediated Kir6.2 channel activation. Based on computer modeling of the Kir6.2 structure, we infer that the EET-Kir6.2 interaction may allosterically change the ATP binding site on Kir6.2, reducing the channel sensitivity to ATP.  相似文献   

17.
H2O2, as an example of oxidative stress, induces cardiac myocyte apoptosis. Bcl-2 family proteins are key regulators of the apoptotic response while their functions can be regulated by post-translational modifications including phosphorylation, dimerization or proteolytic cleavage. In this study, we examined the role of various protein kinases in regulating total BAD protein levels in adult rat cardiac myocytes undergoing apoptosis. Stimulation with 0.1 mM H2O2, which induces apoptosis, resulted in a marked down-regulation of BAD protein, which is attributed to cleavage by caspases since it can be restored in the presence of a general caspase inhibitor. Inhibition of PKC, p38-MAPK, ERK1/2 and PI-3-K did not influence the reduced BAD protein levels observed after stimulation with H2O2. On the contrary, inhibition of PKA or specifically PKCdelta resulted in up-regulation of BAD. Decreased caspase 3 activity was observed in H2O2 treated cells after inhibition of PKA or PKCdelta whereas inhibition of PKA also resulted in improved cell survival. Furthermore, addition of okadaic acid to inhibit selected phosphatases resulted in enhanced BAD cleavage. These data suggest that, during oxidative stress-induced cardiac myocyte apoptosis, there is a caspase-dependent down-regulation of BAD protein, which seems to be regulated by coordinated action of PKA, PKCdelta and phosphatases.  相似文献   

18.
Because the electrophysiological effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on the heart are little known, we studied the regulation of the atrial ATP-sensitive K(+) (K(ATP)) current by PACAP on primary cultured neonatal rat atrial myocytes. PACAP-38 stimulates cAMP production with EC(50) = 0.28 nmol/l (r = 0.92, P < 0.02). PACAP-38 and PACAP-27 (10 nmol/l) have similar maximal effects, whereas 100 nmol/l vasoactive intestinal polypeptide (VIP) is 2.7 times less effective (P < 0.05). RT-PCR shows the presence of cloned PACAP receptors PAC(1) (> or =2 isoforms), VPAC(1), and VPAC(2). PACAP-38 dose dependently activates the whole cell atrial K(ATP) current with EC(50) = 1-3 nmol/l (n = 44). Maximal effects occur at 10 nmol/l (91 +/- 15 pA/pF, n = 18). Diazoxide further increases the PACAP-activated current by 78% (P < 0.05; n = 6). H(89) (500 nmol/l), a protein kinase A (PKA) inhibitor, reduces the PACAP-activated K(ATP) current to 17.8 +/- 9.6% (n = 5) of the maximal diazoxide-induced current and totally inhibits the cAMP-induced K(ATP) current. A protein kinase C (PKC) inhibitor peptide (50 micromol/l) in the pipette reduces the PACAP-38-induced K(ATP) current to 33 +/- 17 pA/pF (P < 0.05, n = 6) without significantly affecting the currents induced by cAMP or VIP. The results suggest that: 1) PAC(1), VPAC(1), and VPAC(2) are present in atrial myocytes; and 2) PACAP-38 activates the atrial K(ATP) channels through both PKA and PKC pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号