首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study Ca(2+) fluxes between mitochondria and the endoplasmic reticulum (ER), we used "cameleon" indicators targeted to the cytosol, the ER lumen, and the mitochondrial matrix. High affinity mitochondrial probes saturated in approximately 20% of mitochondria during histamine stimulation of HeLa cells, whereas a low affinity probe reported averaged peak values of 106 +/- 5 microm, indicating that Ca(2+) transients reach high levels in a fraction of mitochondria. In concurrent ER measurements, [Ca(2+)](ER) averaged 371 +/- 21 microm at rest and decreased to 133 +/- 14 microm and 59 +/- 5 microm upon stimulation with histamine and thapsigargin, respectively, indicating that substantial ER refilling occur during agonist stimulation. A larger ER depletion was observed when mitochondrial Ca(2+) uptake was prevented by oligomycin and rotenone or when Ca(2+) efflux from mitochondria was blocked by CGP 37157, indicating that some of the Ca(2+) taken up by mitochondria is re-used for ER refilling. Accordingly, ER regions close to mitochondria released less Ca(2+) than ER regions lacking mitochondria. The ER heterogeneity was abolished by thapsigargin, oligomycin/rotenone, or CGP 37157, indicating that mitochondrial Ca(2+) uptake locally modulate ER refilling. These observations indicate that some mitochondria are very close to the sites of Ca(2+) release and recycle a substantial portion of the captured Ca(2+) back to vicinal ER domains. The distance between the two organelles thus determines both the amplitude of mitochondrial Ca(2+) signals and the filling state of neighboring ER regions.  相似文献   

2.
Johnson JD  Chang JP 《Cell calcium》2005,37(6):573-581
Goldfish somatotropes contain multiple functionally distinct classes of non-mitochondrial intracellular Ca(2+) stores. In this study, we investigated the role of mitochondrial Ca(2+) handling in the control of hormone secretion. Inhibition of mitochondrial Ca(2+) uptake with 10 microM ruthenium red (RR) and 10 microM carbonyl cyanide m-chlorophenylhydrazone (CCCP) caused a small and reversible increase in cytosolic [Ca(2+)]. Despite relatively modest global Ca(2+) signals, RR and CCCP stimulated robust GH secretion under basal culture conditions. CCCP-stimulated hormone release was abolished in cells pre-incubated with 50 microM BAPTA-AM, suggesting that elevations in cytosolic [Ca(2+)] mediate this release of GH. Both caffeine-sensitive intracellular Ca(2+) stores and L-type Ca(2+) channels can be the source of the Ca(2+) buffered by mitochondria in somatotropes. The stimulatory effect of RR on caffeine-stimulated GH release was enhanced dramatically in the presence of ryanodine, pointing to a complex interaction between these three Ca(2+) stores. Inhibition of mitochondrial Ca(2+) uptake with RR augmented GH release evoked by only one of the two endogenous gonadotropin-releasing hormones. Thus, we provide the first evidence that mitochondrial Ca(2+) buffering is differentially involved in specific agonist Ca(2+) signaling pathways and plays an important role in the control of basal GH release.  相似文献   

3.
Calcium is an important regulator of mitochondrial function. Since there can be tight coupling between inositol 1,4, 5-trisphosphate-sensitive Ca(2+) release and elevation of mitochondrial calcium concentration, we have investigated whether a similar relationship exists between the release of Ca(2+) from the ryanodine receptor and the elevation of mitochondrial Ca(2+). Perfusion of permeabilized A10 cells with inositol 1,4, 5-trisphosphate resulted in a large transient elevation of mitochondrial Ca(2+) to about 8 microm. The response was inhibited by heparin but not ryanodine. Perfusion of the cells with Ca(2+) buffers in excess of 1 microm leads to large increases in mitochondrial Ca(2+) that are much greater than the perfused Ca(2+). These increases, which average around 10 microm, are enhanced by caffeine and inhibited by ryanodine and depletion of the intracellular stores with either orthovanadate or thapsigargin. We conclude that Ca(2+)-induced Ca(2+) release at the ryanodine receptor generates microdomains of elevated Ca(2+) that are sensed by adjacent mitochondria. In addition to ryanodine-sensitive stores acting as a source of Ca(2+), Ca(2+)-induced Ca(2+) release is required to generate efficient elevation of mitochondrial Ca(2+).  相似文献   

4.
The extraordinary capacity of isolated mitochondria to accumulate Ca(2+) has been established for more than 40 years. The distinct kinetics of the independent uptake and efflux pathways accounts for the dual functionality of the transport process to either modulate matrix free Ca(2+) concentrations or to act as temporary stores of large amounts of Ca(2+) in the presence of phosphate. One puzzle has been the nature of the matrix calcium phosphate complex, since matrix free Ca(2+) seems to be buffered in the region of 1-5 microM in the presence of phosphate while millimolar Ca(2+) remains soluble in in vitro media. The key seems to be the elevated matrix pH and the third-power relationship of the PO(4)(3-) concentration with pH. Taking this into account we may now finally have a model that explains the major features of physiological mitochondrial Ca(2+) transport.  相似文献   

5.
Trypanosomatids of the genus Herpetomonas comprises monoxenic parasites of insects that present pro- and opisthomastigotes forms in their life cycles. In this study, we investigated the Ca(2+) transport and the mitochondrial bioenergetic of digitonin-permeabilized Herpetomonas sp. promastigotes. The response of promastigotes mitochondrial membrane potential to ADP, oligomycin, Ca(2+), and antimycin A indicates that these mitochondria behave similarly to vertebrate and Trypanosoma cruzi mitochondria regarding the properties of their electrochemical proton gradient. Ca(2+) transport by permeabilized cells appears to be performed mainly by the mitochondria. Unlike T. cruzi, it was not possible to observe Ca(2+) release from Herpetomonas sp. mitochondria, probably due to the simultaneous Ca(2+) uptake by the endoplasmic reticulum. In addition, a vanadate-sensitive Ca(2+) transport system, attributed to the endoplasmic reticulum, was also detected. Nigericin (1 microM), FCCP (1 microM), or bafilomycin A(1) (5 microM) had no effect on the vanadate-sensitive Ca(2+) transport. These data suggest the absence of a Ca(2+) transport mediated by a Ca(2+)/H(+) antiport. No evidence of a third Ca(2+) compartment with the characteristics of the acidocalcisomes described by A. E. Vercesi et al. (1994, Biochem. J. 304, 227-233) was observed. Thapsigargin and IP(3) were not able to affect the vanadate-sensitive Ca(2+) transport. Ruthenium red was able to inhibit the Ca(2+) uniport of mitochondria, inducing a slow mitochondrial Ca(2+) efflux, compatible with the presence of a Ca(2+)/H(+) antiport. Moreover, this efflux was not stimulated by the addition of NaCl, which suggests the absence of a Ca(2+)/Na(+) antiport in mitochondria.  相似文献   

6.
Light-induced release of Ca(2+) from stores in Limulus ventral photoreceptors was studied using confocal fluorescence microscopy and the Ca(2+) indicator dyes, Oregon green-5N and fluo-4. Fluorescence was collected from a spot within 4 microm of the microvillar membrane. A dual-flash protocol was used to reconstruct transient elevations of intracellular free calcium ion concentration (Ca(i)) after flashes delivering between 10 and 5 x 10(5) effective photons. Peak Ca(i) increased with flash intensity to 138 +/- 76 microM after flashes delivering approximately 10(4) effective photons, while the latent period of the elevation of Ca(i) fell from approximately 140 to 21 ms. The onset of the light-induced elevation of Ca(i) was always highly correlated with that of the receptor potential. The time for Ca(i) to exceed 2 microM was approximately equal to that for the receptor potential to exceed 8 mV (mean difference; 2.2 +/- 6.4 ms). Ca(i) was also measured during steps of light delivering approximately 10(5) effective photons/s to photoreceptors that had been bleached with hydroxylamine so as to reduce their quantum efficiency. Elevations of Ca(i) were detected at the earliest times of the electrical response to the steps of light, when a significant receptor potential had yet to develop. Successive responses exhibited stochastic variation in their latency of up to 20 ms, but the elevation of Ca(i) and the receptor potential still rose at approximately the same time, indicating a shared process generating the latent period. Light-induced elevations of Ca(i) resulted from Ca(2+) release from intracellular stores, being abolished by cyclopiazonic acid (CPA), an inhibitor of endoplasmic reticulum Ca(2+) pumps, but not by removal of extracellular Ca(2+) ions. CPA also greatly diminished and slowed the receptor potential elicited by dim flashes. The results demonstrate a rapid release of Ca(2+) ions that appears necessary for a highly amplified electrical response to dim flashes.  相似文献   

7.
The Ca(2+) coupling between endoplasmic reticulum (ER) and mitochondria is central to multiple cell survival and cell death mechanisms. Cytoplasmic [Ca(2+)] ([Ca(2+)](c)) spikes and oscillations produced by ER Ca(2+) release are effectively delivered to the mitochondria. Propagation of [Ca(2+)](c) signals to the mitochondria requires the passage of Ca(2+) across three membranes, namely the ER membrane, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM). Strategic positioning of the mitochondria by cytoskeletal transport and interorganellar tethers provides a means to promote the local transfer of Ca(2+) between the ER membrane and OMM. In this setting, even >100 microM [Ca(2+)] may be attained to activate the low affinity mitochondrial Ca(2+) uptake. However, a mitochondrial [Ca(2+)] rise has also been documented during submicromolar [Ca(2+)](c) elevations. Evidence has been emerging that Ca(2+) exerts allosteric control on the Ca(2+) transport sites at each membrane, providing mechanisms that may facilitate the Ca(2+) delivery to the mitochondria. Here we discuss the fundamental mechanisms of ER and mitochondrial Ca(2+) transport, particularly the control of their activity by Ca(2+) and evaluate both high- and low-[Ca(2+)]-activated mitochondrial calcium signals in the context of cell physiology.  相似文献   

8.
In the present study we have investigated cytosolic and mitochondrial Ca(2+) signals in isolated mouse pancreatic acinar cells double-loaded with the fluorescent probes fluo-3 and rhod-2. Stimulation of pancreatic acinar cells with 500 nm acetylcholine caused release of Ca(2+) from intracellular stores and produced cytosolic Ca(2+) signals in form of Ca(2+) waves propagating from the luminal to the basal cell pole. The increase in the cytosolic Ca(2+) concentration was followed by Ca(2+) uptake into mitochondria. Between onset of cytosolic and mitochondrial Ca(2+) signals there was a delay of 10.7 +/- 0.4 s. Ca(2+) uptake into mitochondria could be inhibited with Ruthenium Red and carbonyl cyanide m-chlorophenylhydrazone, whereas 2,5-di-tert-butylhydroquinone, which inhibits sarco(endo)plasmic reticulum Ca(2+) ATPases, did not prevent Ca(2+) accumulation in mitochondria. Carbonyl cyanide m-chlorophenylhydrazone-induced Ca(2+) release from mitochondria could only be observed after a preceding stimulation of the cell with a physiological agonist or by treatment with 2, 5-di-tert-butylhydroquinone, indicating that under resting conditions mitochondria do not contain releasable Ca(2+) ions. Analysis of the propagation rate of acetylcholine-induced Ca(2+) waves revealed that inhibition of mitochondrial Ca(2+) uptake did not accelerate spreading of cytosolic Ca(2+) signals. Our experiments indicate that in the early phase of secretagogue-induced Ca(2+) signals, mitochondria behave as passive Ca(2+)-buffering elements and do not actively suppress spreading of Ca(2+) signals in pancreatic acinar cells.  相似文献   

9.
Calcium (Ca(2+)) transport by the distal tubule (DT) luminal membrane is regulated by the parathyroid hormone (PTH) and calcitonin (CT) through the action of messengers, protein kinases, and ATP as the phosphate donor. In this study, we questioned whether ATP itself, when directly applied to the cytosolic surface of the membrane could influence the Ca(2+) channels previously detected in this membrane. We purified the luminal membranes of rabbit proximal (PT) and DT separately and measured Ca(2+) uptake by these vesicles loaded with ATP or the carrier. The presence of 100 microM ATP in the DT membrane vesicles significantly enhanced 0.5 mM Ca(2+) uptake from 0.57 +/- 0.02 to 0.71 +/- 0.02 pmol/microg per 10 sec (P < 0. 01) in the absence of Na(+) and from 0.36 +/- 0.03 to 0.59 +/- 0.01 pmol/microg per 10 sec (P < 0.01) in the presence of 100 mM Na(+). This effect was dose dependent with an EC(50) value of approximately 40 microM. ATP action involved the high-affinity component of Ca(2+) transport, decreasing the Km from 0.08 +/- 0.01 to 0.04 +/- 0.01 mM (P< 0.02). Replacement of the nucleotide by the nonhydrolyzable ATPgammas abolished this action. Because ATP has been reported to be necessary for cytoskeleton integrity, we also investigated the effect of intravesicular cytochalasin on Ca(2+) transport. Inclusion of 20 microM cytochalasin B decreased 0.5 mM Ca(2+) uptake from 0.33 +/- 0.01 to 0.15 +/- 0.01 pmol/microg per 10 sec (P< 0.01). However, when both 100 microM ATP and 20 microM cytochalasin were present in the vesicles, the uptake was not different from that observed with ATP alone. Neither ATP nor cytochalasin had any influence on Ca(2+) uptake by the PT luminal membrane. We conclude that the high-affinity Ca(2+) channel of the DT luminal membrane is regulated by ATP and that ATP plays a crucial role in the integrity of the cytoskeleton which is also involved in the control of Ca(2+) channels within this membrane.  相似文献   

10.
Increased signaling by G(i)-coupled receptors has been implicated in dilated cardiomyopathy. To investigate the mechanisms, we used transgenic mice that develop dilated cardiomyopathy after conditional expression of a cardiac-targeted G(i)-coupled receptor (Ro1). Activation of G(i) signaling by the Ro1 agonist spiradoline caused decreased cellular cAMP levels and bradycardia in Langendorff-perfused hearts. However, acute termination of Ro1 signaling with the antagonist nor-binaltorphimine did not reverse the Ro1-induced contractile dysfunction, indicating that Ro1 cardiomyopathy was not due to acute effects of receptor signaling. Early after initiation of Ro1 expression, there was a 40% reduction in the abundance of the sarcoplasmic reticulum Ca(2+)-ATPase (P < 0.05); thereafter, there was progressive impairment of both Ca(2+) handling and force development assessed with ventricular trabeculae. Six weeks after initiation of Ro1 expression, systolic Ca(2+) concentration was reduced to 0.61 +/- 0.08 vs. 0.91 +/- 0.07 microM for control (n = 6-8; P < 0.05), diastolic Ca(2+) concentration was elevated to 0.41 +/- 0.07 vs. 0.23 +/- 0.06 microM for control (n = 6-8; P < 0.01), and the decline phase of the Ca(2+) transient (time from peak to 50% decline) was slowed to 0.25 +/- 0.02 s vs. 0.13 +/- 0.02 s for control (n = 6-8; P < 0.01). Early after initiation of Ro1 expression, there was a ninefold elevation of matrix metalloproteinase-2 (P < 0.01), which is known to cause myofilament injury. Consistent with this, 6 wk after initiation of Ro1 expression, Ca(2+)-saturated myofilament force in skinned trabeculae was reduced to 21 +/- 2 vs. 38 +/- 0.1 mN/mm(2) for controls (n = 3; P < 0.01). Furthermore, electron micrographs revealed extensive myofilament damage. These findings may have implications for some forms of human heart failure in which increased activity of G(i)-coupled receptors leads to impaired Ca(2+) handling and myofilament injury, contributing to impaired ventricular pump function and heart failure.  相似文献   

11.
We have expressed aequorin in mitochondria of the yeast Saccharomyces cerevisiae and characterized the resulting strain with respect to mitochondrial Ca(2+) transport in vivo and in vitro. When intact cells are suspended in water containing 1.4 mM ethanol and 14 mM CaCl(2), the matrix free Ca(2+) concentration is 200 nM, similar to the values expected in cytoplasm. Addition of ionophore ETH 129 allows an active accumulation of Ca(2+) and promptly increases the value to 1.2 microM. Elevated Ca(2+) concentrations are maintained for periods of 6 min or longer under these conditions. Isolated yeast mitochondria oxidizing ethanol also accumulate Ca(2+) when ETH 129 is present, but the cation is not retained depending on the medium conditions. This finding confirms the presence of a Ca(2+) release mechanism that requires free fatty acids as previously described [P.C. Bradshaw et al. (2001) J. Biol. Chem. 276, 40502-40509]. When a respiratory substrate is not present, Ca(2+) enters and leaves yeast mitochondria slowly, at a specific activity near 0.2 nmol/min/mg protein. Transport under these conditions equilibrates the internal and external concentrations of Ca(2+) and is not affected by ruthenium red, uncouplers, or ionophores that perturb transmembrane gradients of charge and pH. This activity displays sigmoid kinetics and a K(1/2) value for Ca(2+) that is near to 900 nM, in the absence of ethanol or when it is present. It is furthermore shown that the activity coefficient of Ca(2+) in yeast mitochondria is a function of the matrix Ca(2+) content and is substantially larger than that in mammalian mitochondria. Characteristics of the aequorin-expressing strain appear suitable for its use in expression-based methods directed at cloning Ca(2+) transporters from mammalian mitochondria and for further examining the interrelationships between mitochondrial and cytoplasmic Ca(2+) in yeast.  相似文献   

12.
The effect of Ca(2+)-binding protein regucalcin on Ca(2+)-ATPase activity in isolated rat liver mitochondria was investigated. The presence of regucalcin (0.1, 0.25, and 0.5 microM) in the enzyme reaction mixture led to a significant increase in Ca(2+)-ATPase activity. Regucalcin significantly stimulated ATP-dependent (45)Ca(2+) uptake by the mitochondria. Ruthenium red (10(-5) M) or lanthanum chloride (10(-4) M), an inhibitor of mitochondrial Ca(2+) uptake, completely inhibited regucalcin (0.25 microM)-increased mitochondrial Ca(2+)-ATPase activity and (45)Ca(2+) uptake. The effect of regucalcin (0.25 microM) in increasing Ca(2+)-ATPase activity was completely inhibited by the presence of digitonin (10(-2)%), a solubilizing reagent of membranous lipids, or vanadate (10(-5) M), an inhibitor of phosphorylation of ATPase. The activatory effect of regucalcin (0.25 microM) on Ca(2+)-ATPase activity was not further enhanced in the presence of dithiothreitol (2.5 mM), a protecting reagent of the sulfhydryl (SH) group of the enzyme, or calmodulin (0.60 microM), a modulator protein of Ca(2+) action that could increase mitochondrial Ca(2+)-ATPase activity. The present study demonstrates that regucalcin can stimulate Ca(2+) pump activity in rat liver mitochondria, and that the protein may act on an active site (SH group)-related to phosphorylation of mitochondrial Ca(2+)-ATPase.  相似文献   

13.
We explored the possibility that the hormone 3,3',5-tri-iodothyronine can regulate the biosynthesis of the mitochondrial calcium uniporter. To meet this objective experiments on Ca(2+) transport, and binding of the specific inhibitor Ru(360) were carried out in mitochondria isolated from euthyroid, hyperthyroid and hypothyroid rats. It was found that V(max) for Ca(2+) transport increased from 11.67+/-0.8 in euthyroid to 14.36+/-0.44 in hyperthyroid, and decreased in hypothyroid mitochondria to 8.62+/-0.63 nmol Ca(2+)/mg/s. Furthermore, the K(i) for the specific inhibitor Ru(360), depends on the thyroid status, i.e. 18, 19 and 13 nM for control, hyper- and hypothyroid mitochondria, respectively. In addition, the binding of 103Ru(360) was increased in hyperthyroid and decreased in hypothyroid mitochondria. Scatchard analysis for the binding of 103Ru(360) showed the following values: 28, 40 and 23 pmol/mg for control, hyper- and hypothyroid mitochondria, respectively. The K(d) for 103Ru(360) was found to be 30.39, 37.03 and 35.71 nM for controls, hyper- and hypothyroid groups, respectively. When hypothyroid rats were treated with thyroid hormone, mitochondrial Ca(2+) transport, as well as 103Ru(360) binding, reached similar values to those found for euthyroid mitochondria.  相似文献   

14.
To study the role of calreticulin in Ca(2+) homeostasis and apoptosis, we generated cells inducible for full-length or truncated calreticulin and measured Ca(2+) signals within the cytosol, the endoplasmic reticulum (ER), and mitochondria with "cameleon" indicators. Induction of calreticulin increased the free Ca(2+) concentration within the ER lumen, [Ca(2+)](ER), from 306 +/- 31 to 595 +/- 53 microm, and doubled the rate of ER refilling. [Ca(2+)](ER) remained elevated in the presence of thapsigargin, an inhibitor of SERCA-type Ca(2+) ATPases. Under these conditions, store-operated Ca(2+) influx appeared inhibited but could be reactivated by decreasing [Ca(2+)](ER) with the low affinity Ca(2+) chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine. In contrast, [Ca(2+)](ER) decreased much faster during stimulation with carbachol. The larger ER release was associated with a larger cytosolic Ca(2+) response and, surprisingly, with a shorter mitochondrial Ca(2+) response. The reduced mitochondrial signal was not associated with visible morphological alterations of mitochondria or with disruption of the contacts between mitochondria and the ER but correlated with a reduced mitochondrial membrane potential. Altered ER and mitochondrial Ca(2+) responses were also observed in cells expressing an N-truncated calreticulin but not in cells overexpressing calnexin, a P-domain containing chaperone, indicating that the effects were mediated by the unique C-domain of calreticulin. In conclusion, calreticulin overexpression increases Ca(2+) fluxes across the ER but decreases mitochondrial Ca(2+) and membrane potential. The increased Ca(2+) turnover between the two organelles might damage mitochondria, accounting for the increased susceptibility of cells expressing high levels of calreticulin to apoptotic stimuli.  相似文献   

15.
Parallel activation of heart mitochondria NADH and ATP production by Ca(2+) has been shown to involve the Ca(2+)-sensitive dehydrogenases and the F(0)F(1)-ATPase. In the current study we hypothesize that the response time of Ca(2+)-activated ATP production is rapid enough to support step changes in myocardial workload ( approximately 100 ms). To test this hypothesis, the rapid kinetics of Ca(2+) activation of mV(O(2)), [NADH], and light scattering were evaluated in isolated porcine heart mitochondria at 37 degrees C using a variety of optical techniques. The addition of Ca(2+) was associated with an initial response time (IRT) of mV(O(2)) that was dose-dependent with a minimum IRT of 0.27 +/- 0.02 s (n = 41) at 535 nm Ca(2+). The IRTs for NADH fluorescence and light scattering in response to Ca(2+) additions were similar to mV(O(2)). The Ca(2+) IRT for mV(O(2)) was significantly shorter than 1.6 mm ADP (2.36 +/- 0.47 s; p < or = 0.001, n = 13), 2.2 mm P(i) (2.32 +/- 0.29, p < or = 0.001, n = 13), or 10 mm creatine (15.6.+/-1.18 s, p < or = 0.001, n = 18) under similar experimental conditions. Calcium effects were inhibited with 8 microm ruthenium red (2.4 +/- 0.31 s; p < or = 0.001, n = 16) and reversed with EGTA (1.6 +/- 0.44; p < or = 0.01, n = 6). Estimates of Ca(2+) uptake into mitochondria using optical Ca(2+) indicators trapped in the matrix revealed a sufficiently rapid uptake to cause the metabolic effects observed. These data are consistent with the notion that extramitochondrial Ca(2+) can modify ATP production, via an increase in matrix Ca(2+) content, rapidly enough to support cardiac work transitions in vivo.  相似文献   

16.
We measured changes in the intrinsic fluorescence (IF) of the neurosecretory terminals of the mouse neurohypophysis during brief (1-2 s) trains of stimuli. With fluorescence excitation at either 350 +/- 20 or 450 +/- 50 nm, and with emission measured, respectively, at 450 +/- 50 or > or = 520 nm, DeltaF/F(o) was approximately 5-8 % for a 2 s train of 30 action potentials. The IF changes lagged the onset of stimulation by approximately 100 ms and were eliminated by 1 microM tetrodotoxin (TTX). The signals were partially inhibited by 500 microM Cd(2+), by substitution of Mg(2+) for Ca(2+), by Ca(2+)-free Ringer's with 0.5 mM EGTA, and by 50 microM ouabain. The IF signals were also sensitive to the mitochondrial metabolic inhibitors CCCP (0.3 microM), FCCP (0.3 microM), and NaN(3) (0.3 mM), and their amplitude reflected the partial pressure of oxygen (pO(2)) in the bath. Resting fluorescence at both 350 nm and 450 nm exhibited significant bleaching. Flavin adenine dinucleotide (FAD) is fluorescent, while its reduced form FADH(2) is relatively non-fluorescent; conversely, NADH is fluorescent, while its oxidized form NAD is non-fluorescent. Thus, our experiments suggest that the stimulus-coupled rise in [Ca(2+)](i) triggers an increase in FAD and NAD as FADH(2) and NADH are oxidized, but that elevation of [Ca(2+)](i), alone cannot account for the totality of changes in intrinsic fluorescence.  相似文献   

17.
In the present study we have employed single cell imaging analysis to monitor the propagation of cholecystokinin-evoked Ca(2+) waves in mouse pancreatic acinar cells. Stimulation of cells with 1 nM CCK-8 led to an initial Ca(2+) release at the luminal cell pole and subsequent spreading of the Ca(2+) signal towards the basolateral membrane in the form of a Ca(2+) wave. Inhibition of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) activity by 1 microM thapsigargin, preincubation in the presence of 100 microM H(2)O(2) or inhibition of PKC with either 5 microM Ro31-8220 or 3 microM GF-109203-X all led to a faster propagation of CCK-8-induced Ca(2+) signals. The propagation of CCK-8-evoked Ca(2+) signals was slowed down by activation of PKC with 1 microM PMA, and preincubation of cells in the presence of H(2)O(2) counteracted the effect of PKC inhibition. The protonophore FCCP (100 nM) and the inhibitor of the mitochondrial Ca(2+)-uniporter Ru360 (10 microM) led to an increase in the propagation rate of CCK-8-evoked Ca(2+) waves. Finally, depolymerisation of actin cytoskeleton with cytochalasin D (10 microM) led to a faster propagation of CCK-8-evoked Ca(2+) signals. Stabilization of actin cytoskeleton with jasplakinolide (10 microM) did not induce significant changes on CCK-8-evoked Ca(2+) waves. Preincubation of cells in the presence of H(2)O(2) counteracted the effect of cytochalasin D on CCK-8-evoked Ca(2+) wave propagation. Our results suggest that spreading of cytosolic Ca(2+) waves evoked by CCK-8 can be modulated by low levels of oxidants acting on multiple Ca(2+)-handling mechanisms.  相似文献   

18.
We have studied the role of the actin cytoskeleton in bombesin-induced inositol 1,4,5-trisphosphate (IP(3))-production and Ca(2+)release in the pancreatic acinar tumour cell line AR4-2J. Intracellular and extracellular free Ca(2+)concentrations were measured in cell suspensions, using Fura-2. Disruption of the actin cytoskeleton by pretreatment of the cells with latrunculin B (10 microM), cytochalasin D (10 microM) or toxin B from Clostridium difficile (20 ng/ml) for 5-29 h led to inhibition of both, bombesin-stimulated IP(3)-production and Ca(2+)release. The toxins had no effect on binding of bombesin to its receptor, on Ca(2+)uptake into intracellular stores and on resting Ca(2+)levels. Ca(2+)mobilization from intracellular stores, induced by thapsigargin (100 nM) or IP(3)(1 microM) was not impaired by latrunculin B. In latrunculin B-pretreated cells inhibition of both, bombesin-stimulated IP(3)- production and Ca(2+)release was partly suspended in the presence of aluminum fluoride, an activator of G-proteins. Aluminum fluoride had no effect on basal IP(3)and Ca(2+)levels of control and toxin-pretreated cells. We conclude that disruption of the actin cytoskeleton impairs coupling of the bombesin receptor to its G-protein, resulting in inhibition of phospholipase C-activity with subsequent decreases in IP(3)-production and Ca(2+)release.  相似文献   

19.
We have investigated the role of extramitochondrial Na(+) for the regulation of mitochondrial Ca(2+) concentration ([Ca(2+)](m)) in permeabilized single vascular endothelial cells. [Ca(2+)](m) was measured by loading the cells with the membrane-permeant Ca(2+) indicator fluo-3/AM and subsequent removal of cytoplasmic fluo-3 by surface membrane permeabilization with digitonin. An elevation of extramitochondrial Ca(2+) resulted in a dose-dependent increase in the rate of Ca(2+) accumulation into mitochondria (k(0.5) = 3 microm) via the mitochondrial Ca(2+) uniporter. In the presence of 10 mm extramitochondrial Na(+) ([Na(+)](em)), repetitive application of brief pulses of high Ca(2+) (2-10 microm) to simulate cytoplasmic [Ca(2+)] oscillations caused transient increases of [Ca(2+)](m) characterized by a fast rising phase that was followed by a slow decay. Removal of extramitochondrial Na(+) or inhibition of mitochondrial Na(+)/Ca(2+) exchange with clonazepam blocked mitochondrial Ca(2+) efflux and resulted in a net accumulation of Ca(2+) by the mitochondria. Half-maximal activation of mitochondrial Na(+)/Ca(2+) exchange occurred at [Na(+)](em) = 4.4 mm, which is well within the physiological range of cytoplasmic [Na(+)]. This study provides evidence that Ca(2+) efflux from the mitochondria in vascular endothelial cells occurs solely via Na(+)/Ca(2+) exchange and emphasizes the important role of intracellular Na(+) for mitochondrial Ca(2+) regulation.  相似文献   

20.
The stimulation of 2-oxoglutarate and NAD(+)-isocitrate dehydrogenase by Ca2+ in mitochondria from normal tissues has been proposed to mediate partially the activation of oxidative energy metabolism elicited by physiological elevations in cytosolic Ca2+. This mode of regulation may also occur in tumor cells in which several aspects of mitochondrial metabolism are known to be altered. This study provides a comparison of the stimulation by submicromolar concentrations of Ca2+ on the rates of ATP-generating (state 3) respiration under physiologically realistic conditions by mitochondria isolated from normal rat liver and from highly malignant rat AS-30D ascites hepatoma cells. The K0.5 for activation of glutamate-dependent state 3 respiration by Ca2+ in the presence of ATP at 37 degrees C was determined to be 0.70 +/- 0.05 (S.E.) microM for hepatoma mitochondria and 0.90 +/- 0.03 microM for rat liver mitochondria. This activation was also reflected by a Ca2(+)-induced shift in the oxidation-reduction state of hepatoma mitochondrial pyridine nucleotides to a more reduced level and Ca2+ stimulation of 14CO2 production from [1-14C]glutamate. Whereas the Ca2+ sensitivity of state 3 respiration by hepatoma mitochondria can be explained by the activation of 2-oxoglutarate and possibly NAD(+)-isocitrate dehydrogenases, the Ca2+ sensitivity of liver mitochondrial respiration appears to be predominantly mediated by activation of electron flow through ubiquinone and Complex III of the electron transport chain, as indicated by the specificity of the effects of Ca2+ on respiration with different oxidizable substrates. Although rat liver and hepatoma mitochondria employ different modes of Ca2(+)-activated ATP generation, these results support the hypothesis that changes in cytosolic Ca2+ play a significant role in the potentiation of energy production in tumor, as well as normal tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号