首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 431 毫秒
1.
One-step isolation of plant DNA suitable for PCR amplification   总被引:4,自引:0,他引:4  
We report a one-step extraction technique for the isolation of plant DNA, DNA suitable for amplification by PCR can be produced from leaf material smaller than 0.3 mm2 in less than 20 min, with no tube changes. The method was tested on several plant specA00AK020ies. The described method was found to extract DNA that could be amplified without any further purification or treatment. The isolated DNA was amplified using a universal chloroplast primer set. The method was validated by comparing size of PCR products generated by the novel method to PCR products generated using standard DNA isolation techniques.  相似文献   

2.
To develop a simplified method that can rapidly prepare DNA microarray probes in a massive scale, a lambda phage genomic DNA-fragments library was constructed for the microarray-probes collection. Four methods of DNA band recovery from the first PCR products were tested and compared. The DNA microarray probes were collected by a novel method of nested PCR that was mediated by gel isolation of the first PCR products. This method was named GIN-PCR. The probes that were prepared by this GIN-PCR technique were used as subjects to fabricate a DNA microarray. The results showed that a wooden toothpick was superior to the other 3 methods, since this technique can steadily transfer the DNA bands as the template of the second PCR after the first PCR. A group of probes were successfully collected and DNA microarrays were constructed using these probes. Hybridization results demonstrated that this technique of DNA recovery and probe preparation was rapid, efficient, and effective. We developed a cost-effective and less labor-intensive method for DNA microarray probe preparation by nested PCR that is mediated by wooden toothpick transfer of the DNA bands in the gel after electrophoresis.  相似文献   

3.
PCR技术在猴免疫缺陷病毒(SIV)感染模型中的应用   总被引:12,自引:5,他引:7  
目的(1)建立RT PCR方法,定性测定SIV感染猴血浆中病毒RNA,比较其与传统血浆病毒分离方法的敏感性;(2)建立DNA PCR方法,检测SIV感染猴外周血淋巴细胞(PBMCs)中的前病毒DNA。(3)检验DNA PCR和RNA PCR方法在猴SAIDS模型应用中的实用性和可操作性。方法用SIVmac251静脉感染恒河猴,定期采血,从血浆中提取病毒RNA,以RNA为模板通过RT PCR法扩增,凝胶电泳定性;从感染猴PBMC中提取带有整合的SIV前病毒DNA的细胞基因组DNA,巢式PCR扩增,凝胶电泳定性。结果DNA PCR和RNA PCR经两轮扩增后均得到一长度为477bp的特异条带,测序鉴定确为目的片段。9只实验猴感染SIV后7d,RNA PCR结果为79阳性,DNA PCR结果为100%阳性,而血浆病毒分离只有59阳性;此后一直到感染后的42d,RNA PCR和DNA PCR的结果一直为100%阳性,而血浆病毒分离阳性率在感染后35d下降到49,到42d时下降为零。结论PCR方法比病毒分离方法的敏感性高。尤其是DNA PCR,既可检测具有活跃病毒复制的受感染细胞,又可检测那些携带病毒处于转录休眠期的细胞,所以在感染的早期和中后期———血浆病毒水平较低的情况下或病毒处于潜伏感染的阶段,它作为猴艾滋病(SAIDS)模型病毒学指标之一有其必要性和重要性。这个指标的检测方法应该是较血浆病毒RNA检测更为敏感。  相似文献   

4.
We describe a novel modification of the polymerase chain reaction for efficient in vitro amplification of genomic DNA sequences flanking short stretches of known sequence. The technique utilizes a target enrichment step, based on the selective isolation of biotinylated fragments from the bulk of genomic DNA on streptavidin-containing support. Subsequently, following ligation with a second universal linker primer, the selected fragments can be amplified to amounts suitable for further molecular studies. The procedure has been applied to recover T-DNA flanking sequences in transgenic tomato plants which could subsequently be used to assign the positions of T-DNA to the molecular map of tomato. The method called supported PCR (sPCR) is a simple and efficient alternative to techniques used in the isolation of specific sequences flanking a known DNA segment.  相似文献   

5.
一种适于PCR扩增的小麦基因组DNA快速提取法   总被引:11,自引:0,他引:11  
许多小麦分子生物学研究需要对大量的小麦样品进行PCR检测,因此,建立一种快速提取小麦基因组DNA的方法十分必要。根据国外报道的一种快速提取水稻和玉米基因组DNA的方法,我们对部分提取步骤进行变动后,在小麦上进行了尝试,长度为1.5kb的片段能得到稳定的扩增。该方法样品研磨在1.5ml的离心管内进行,后续操作不用酚、氯仿、CTAB、SDS和巯基乙醇,整个提取过程不需要使用通风橱,操作步骤简单,花费时间少,而且提取的小麦基因组DNA完整性好,量也较可观。一个DNA样品可供50~100次PCR反应使用,适用于小麦遗传多样性、分子标记辅助选择、转基因后代检测以及引物筛选、分子标记定位等多种研究。  相似文献   

6.
Single-molecule PCR using water-in-oil emulsion   总被引:2,自引:0,他引:2  
Polymerase chain reaction (PCR) using a single molecule of DNA is very useful for analysis, detection and cloning of the desired DNA fragment. We developed a simple PCR method utilizing a water-in-oil (W/O) emulsion that included numerous droplets of reaction mixture in bulk oil phase. These droplets, which were stable even at high temperatures, functioned as micro-reactors. This allows the effective concentration of template DNA to be increased, even for low concentrations of template DNA. The present method consists of a two-step thermal cycle. The first step was carried out using the W/O emulsion. During this step, the template DNA was amplified in the limited volume of the droplets in the W/O emulsion. The W/O emulsion was broken and the second PCR step was carried out. This method can be easily applied to amplify a single DNA molecule.  相似文献   

7.
A modification of gDNA extraction was developed for the polymerase chain reaction (PCR) technique, intended for the detection and differentiation of Toxocara spp. eggs in soil or sediments. Sand samples from sandpits confirmed as being contaminated with Toxocara spp. eggs by the flotation technique were analysed by PCR. The use of proteinase K made it possible to obtain genomic DNA from the sample without needing to isolate eggs using flotation or to inactivate PCR inhibitors present in the sand. Specific primers in the PCR reaction allowed discrimination between T. canis and T. cati eggs. The modification simplified the procedure, thanks to eliminating the step of gDNA isolation from eggs, which is both laborious and difficult.  相似文献   

8.
A method that allows amplification and direct sequencing or cloning of an unknown DNA segment flanked by a known sequence is described using barley genomic DNA. The method avoids the step of circularization necessary for inverse PCR by ligation of primer-adapters to restricted genomic DNA. Specificity is achieved in the first amplification step; linear PCR with a biotinylated primer complementary to the known flanking sequence (primer 1-B) produces a single-stranded product that is purified employing streptavidin-coated magnetic beads. After this step, which removes genomic DNA, two rounds of exponential PCR are performed, first with the adapter-primer and primer 1 and second with primer 1 substituted by a nested primer 2. If the second primer is biotinylated, the product can be sequenced directly using solid-phase sequencing. We have employed this method to sequence directly and to clone the promoters of two late embryogenesis-abundant (Lea) genes (B19.4 and B19.3) from barley. Lea B19.4 and B19.3 encode putative desiccation-protective proteins that act in the final stages of embryogenesis and have previously been cloned as cDNAs. We demonstrate here that their proximal promoter regions are very similar (80% identity) and that both contain putative abscisic acid-responsive elements.  相似文献   

9.
The polymerase chain reaction (PCR)-based genome walking method has been extensively used to isolate unknown flanking sequences, whereas nonspecific products are always inevitable. To resolve these problems, we developed a new strategy to isolate the unknown flanking sequences by combining A-T linker adapter PCR with inverse PCR (I–PCR) or thermal asymmetric interlaced PCR (TAIL–PCR). The result showed that this method can be efficiently achieved with the flanking sequence from the Arabidopsis mutant and papain gene. Our study provides researchers with an additional method for determining genomic DNA flanking sequences to identify the target band from bulk of bands and to eliminate the cloning step for sequencing.  相似文献   

10.
Isolated-probe PCR (IP-PCR) is a method that combines asymmetric PCR, unlabeled probes, and high-resolution DNA melting while maintaining a closed tube system. A double-stranded DNA (dsDNA) dye LCGreen I was used to detect the unlabeled probes. LCGreen I is also used to detect the 277-base pair PCR product peak as an internal amplification control. To accomplish this, IP-PCR separates the asymmetric PCR amplification step and the detection step of the unlabeled probes. This prevents the probes from interfering with the amplification of the DNA target. The samples are then melted using a high-resolution DNA melting instrument: the HR-1. The closed tube system virtually eliminates PCR product contamination or sample carryover The target apolipoprotein E (APOE) was chosen to test the IP-PCR technique. APOE contains two single nucleotide polymorphisms (SNPs) located 139 base pairs apart in a GC-rich region of the human genome. The results from this study show that the IP-PCR technique was able to determine the correct APOE genotype for each of the 101 samples. The IP-PCR technique should also be useful in detecting SNPs in other high-GC regions of the human genome.  相似文献   

11.
This protocol for DNA isolation from forest soil samples is advantageous because it uses only one liquid transference step and can process several samples with minimal time and equipment. The use of benzyl chloride early in the extraction protocol increases DNA yield and purity. The obtained DNA is useful for PCR amplification of nuclear and mitochondrial ribosomal related sequences from fungi and ribosomal DNA from plant chloroplasts. Isolated DNA can be used either undiluted or at low dilutions in PCR assays. A final glassmilk treatment of isolated DNA is useful to recover high molecular weight DNA fractions from agarose gel. DNA losses during glassmilk treatment can generate negative PCR results.  相似文献   

12.
Extraction of high-quality DNA is a key step in PCR detection of Cryptosporidium and other pathogens in environmental samples. Currently, Cryptosporidium oocysts in water samples have to be purified from water concentrates before DNA is extracted. This study compared the effectiveness of six DNA extraction methods (DNA extraction with the QIAamp DNA minikit after oocyst purification with immunomagnetic separation and direct DNA extraction methods using the FastDNA SPIN kit for soil, QIAamp DNA stool minikit, UltraClean soil kit, or QIAamp DNA minikit and the traditional phenol-chloroform technique) for the detection of Cryptosporidium with oocyst-seeded samples, DNA-spiked samples, and field water samples. The study also evaluated the effects of different PCR facilitators (nonacetylated bovine serum albumin, the T4 gene 32 protein, and polyvinylpyrrolidone) and treatments (the use of GeneReleaser or ultrafiltration) for the relief from or removal of inhibitors of PCR amplification. The results of seeding and spiking studies showed that PCR inhibitors were presented in all DNA solutions extracted by the six methods. However, the effect of PCR inhibitors could be relieved significantly by the addition of 400 ng of bovine serum albumin/mul or 25 ng of T4 gene 32 protein/mul to the PCR mixture. With the inclusion of bovine serum albumin in the PCR mixture, DNA extracted with the FastDNA SPIN kit for soil without oocyst isolation resulted in PCR performance similar to that produced by the QIAamp DNA minikit after oocysts were purified by immunomagnetic separation.  相似文献   

13.
DNA is the essential substrate for the polymerase chain reaction (PCR). Standard protocols include a DNA purification step, but this is laborious if a large number of DNA preparations have to be performed, although a variety of simple methods exist for the isolation of crude DNA for PCR. For microorganisms, PCR protocols exist that allow the amplification of sequences directly from the organism without DNA purification. The results introduced in this paper demonstrate that a direct PCR approach also works with fruitflies and blood flukes as examples for intact multicellular organisms.  相似文献   

14.
PCR assays were developed for the direct detection of Paenibacillus larvae in honey samples and compared with isolation and biochemical characterization procedures. Different primer pairs, designed from the 16S rRNA and the metalloproteinase precursor gene regions, and different DNA extraction methods were tested and compared. The sensitivity of the reactions was evaluated by serial dilutions of DNA extracts obtained from P. larvae cultures. The specificity of the primers was assessed by analyzing related Paenibacillus and Bacillus strains isolated from honey. The PCR assays also amplified these related bacteria, but at lower sensitivity. In the next step, the PCR assays were applied to contaminated honey and other bee products originating from 15 countries. Lysozyme treatment followed by proteinase K digestion was determined to be the best DNA extraction method for P. larvae spores. The most sensitive primer pair detected P. larvae in 18 of 23 contaminated honey samples, as well as in pollen, wax, and brood. Honey specimens containing saprophyte bacilli and paenibacilli, but not P. larvae, were PCR negative. Although the isolation and biochemical identification method (BioLog) showed higher sensitivity and specificity, PCR proved to be a valuable technique for large-scale screening of honey samples for American foulbrood, especially considering its rapidity and moderate costs.  相似文献   

15.
This article describes the development of an improved method for the isolation of genomic fragments adjacent to a known DNA sequence based on a cassette ligation-mediated polymerase chain reaction (PCR) technique. To reduce the nonspecific amplification of PCR-based genome walking, the 3′ ends of the restriction enzyme-digested genomic DNA fragments were blocked with dideoxynucleoside triphosphate (ddNTP) and ligated with properly designed cassettes. The modified genomic DNA fragments flanked with cassettes were used as a template for the amplification of a target gene with a gene-specific primer (GSP) and a cassette primer (CP). The ddNTP blocking of the genomic DNA ends significantly reduced the nonspecific amplification and resulted in a simple and rapid walking along the genome. The efficiency of the template-blocking PCR method was confirmed by a carefully designed control experiment. The method was successfully applied for the cloning of the PGK1 promoter from Pichia ciferrii and two novel cellulase genes from Penicillium sp.  相似文献   

16.
AIMS: Real-time PCR, based on TaqMan chemistry, was used to detect Biscogniauxia mediterranea, a fungal pathogen that after a long endophytic phase may cause charcoal disease in oak trees. METHODS AND RESULTS: Specific primers and probe were designed and tested on axenic cultures of B. mediterranea and other fungi commonly colonizing oaks. Twig samples were collected in Tuscany from apparently healthy oaks (Quercus cerris, Quercus ilex and Quercus pubescens) growing near trees infected with the fungus. Twigs were divided into two groups: one for isolation in agar plates, and one for real-time PCR after DNA extraction. The detection limit of the assay was 0.01 pg/DNA, whereas the amounts of fungal DNA detected in asymptomatic tissue were >0.5 pg microg(-1) total DNA extracted. In the apparently healthy twigs the frequency of isolation found on agar was 25.0%, much lower than that with real-time PCR (96.4%). CONCLUSIONS: Real-time PCR is a sensitive and fast technique able to specifically detect and quantify the DNA of B. mediterranea in oak tissue. SIGNIFICANCE AND IMPACT OF THE STUDY: This diagnostic method is a precise tool to localize fungi in symptomless plant tissues and promises to advance our understanding of fungal infection during their latent phase.  相似文献   

17.
A method was developed for genome analysis of phytoplasmas, bacterial plant pathogens that cannot be cultivated in vitro in cell-free media. The procedure includes a CsCl-bisbenzimide gradient buoyant centrifugation followed by polymerase chain reaction (PCR)-mediated whole genome amplification. The latter step involves digestion of the DNA by a restriction enzyme with an A/T-rich recognition sequence. Due to the different A/T content in the DNA of the pathogen and its plant host, the fragments originating from phytoplasma are shorter and are preferentially amplified in the PCR reaction. Products obtained were cloned and screened by dot-blot hybridization. Results showed that about 90% of recombinant clones appeared to harbor phytoplasma specific DNA inserts. Sequencing of randomly selected clones was carried out and comparison with the NCBI database confirmed the bacterial origin for the sequences, which have been assigned a putative function. The origin of the recombinant clones was further confirmed by the generation of specific amplicons from the phytoplasma-infected plant and not from the healthy control, using PCR primers devised from the sequences of the recombinant clones. This method could be used for genome-wide comparisons between phytoplasmas.  相似文献   

18.
Extraction of high-quality DNA is a key step in PCR detection of Cryptosporidium and other pathogens in environmental samples. Currently, Cryptosporidium oocysts in water samples have to be purified from water concentrates before DNA is extracted. This study compared the effectiveness of six DNA extraction methods (DNA extraction with the QIAamp DNA minikit after oocyst purification with immunomagnetic separation and direct DNA extraction methods using the FastDNA SPIN kit for soil, QIAamp DNA stool minikit, UltraClean soil kit, or QIAamp DNA minikit and the traditional phenol-chloroform technique) for the detection of Cryptosporidium with oocyst-seeded samples, DNA-spiked samples, and field water samples. The study also evaluated the effects of different PCR facilitators (nonacetylated bovine serum albumin, the T4 gene 32 protein, and polyvinylpyrrolidone) and treatments (the use of GeneReleaser or ultrafiltration) for the relief from or removal of inhibitors of PCR amplification. The results of seeding and spiking studies showed that PCR inhibitors were presented in all DNA solutions extracted by the six methods. However, the effect of PCR inhibitors could be relieved significantly by the addition of 400 ng of bovine serum albumin/μl or 25 ng of T4 gene 32 protein/μl to the PCR mixture. With the inclusion of bovine serum albumin in the PCR mixture, DNA extracted with the FastDNA SPIN kit for soil without oocyst isolation resulted in PCR performance similar to that produced by the QIAamp DNA minikit after oocysts were purified by immunomagnetic separation.  相似文献   

19.
Dozens of PCR-based methods are available for chromosome walking from a known sequence to an unknown region. These methods are of three types: inverse PCR, ligation-mediated PCR and randomly primed PCR. However, none of them has been generally applied for this purpose, because they are either difficult or inefficient. Here we describe a simple and efficient PCR strategy—T-linker-specific ligation PCR (T-linker PCR) for gene or chromosome walking. The strategy amplifies the template molecules in three steps. First, genomic DNA is digested with 3′ overhang enzymes. Secondly, primed by a specific primer, a strand of the target molecule is replicated by Taq DNA polymerase and a single A tail is generated on the 3′ unknown end of the target molecule, and then a 3′ overhang-T linker (named T-linker) is specifically ligated onto the target. Thirdly, the target is amplified by two rounds of nested PCR with specific primers and T-linker primers. T-linker PCR significantly improves the existing PCR methods for walking because it uses specific T/A ligation instead of arbitrary ligation or random annealing. To show the feasibility and efficiency of T-linker PCR, we have exploited this method to identify vector DNA or T-DNA insertions in transgenic plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号