共查询到20条相似文献,搜索用时 0 毫秒
1.
Intact, isolated spinach chloroplasts incorporated 14C from 14CO2 into plastoquinone and β-carotene under photosynthetic conditions. Addition of unlabelled l-tyrosine, p-hydroxyphenylpyruvate, or homogentisate increased the incorporation of 14C into plastoquinone, but decreased that into β-carotene. 相似文献
2.
José Ruiz-Herrera 《Antonie van Leeuwenhoek》1991,60(2):73-81
Glucans are the most abundant polysaccharides present in fungi. The present review provides updated information on the structure and synthesis of -glucans in fungal cells. Synthesis of these polymers made up of B1,3 chains with a variable degree of B1,6 branching involves several reactions: initiation, chain elongation and branching, of which the most studied one is the elongation step. This reaction, catalyzed by the so-called glucan synthetases, utilizes UDPG as sugar donor. Properties of glucan synthetases are extremely variable depending on the fungal species, and their developmental stage. Because of the importance of these polysaccharides it is anticipated that comprehension of their mechanism of synthesis, is important for the understanding of cell wall assembly and cell growth and morphogenesis, as well as for the design of specific antifungal drugs.Abreviations UDPG
uridine-diphospho-glucose
- GDPG
guanosine-diphospho-glucose
- ADPG
adenosine-diphospho-glucose
- MW
molecular weight
- mic
minimal inhibitory concentration
- d.p.
degree of polymerization
- PAGE
polyacrylamide gel electrophoresis
- SDS
sodium dodecyl sulfate 相似文献
3.
We have engineered brewer's yeast as a general platform for de novo synthesis of diverse β-lactam nuclei starting from simple sugars, thereby enabling ready access to a number of structurally different antibiotics of significant pharmaceutical importance. The biosynthesis of β-lactam nuclei has received much attention in recent years, while rational engineering of non-native antibiotics-producing microbes to produce β-lactam nuclei remains challenging. Benefited by the integration of heterologous biosynthetic pathways and rationally designed enzymes that catalyze hydrolysis and ring expansion reactions, we succeeded in constructing synthetic yeast cell factories which produce antibiotic cephalosporin C (CPC, 170.1 ± 4.9 μg/g DCW) and the downstream β-lactam nuclei, including 6-amino penicillanic acid (6-APA, 5.3 ± 0.2 mg/g DCW), 7-amino cephalosporanic acid (7-ACA, 6.2 ± 1.1 μg/g DCW) as well as 7-amino desacetoxy cephalosporanic acid (7-ADCA, 1.7 ± 0.1 mg/g DCW). This work established a Saccharomyces cerevisiae platform capable of synthesizing multiple β-lactam nuclei by combining natural and artificial enzymes, which serves as a metabolic tool to produce valuable β-lactam intermediates and new antibiotics. 相似文献
4.
To search precursors of ethylene in banana fruits, ethylene formation from acetate-2-14C and fumarate-2,3-14C by banana slices was studied. Ethylene-14C formation from acetate-2-l4C was reduced by the addition of malonate or β-hydroxypropionate, and it was enhanced in a sealed chamber in comparison with the case in an aeration chamber. No label of fumarate-2,3-14C was incorporated into ethylene.From these facts it was suggested that acetate-2-14C was incorporated into ethylene via malonate and β-hydroxypropionate. Participation of fumarate in ethylene biosynthesis of banana fruits was ruled out. β-Hydroxypropionate was postulated as an effective precursor of ethylene formation from acetate-2-l4C. 相似文献
5.
Ruijian Wang Xueying Yang Renjun Gao Ye Yang Xiaojuan Wang Shugui Cao 《Journal of Molecular Catalysis .B, Enzymatic》2009,56(2-3):131-135
Two secondary alcohol glucosides, cyclohexyl-α-d-glucoside and cyclohexyl-β-d-glucoside, were synthesized via the condensation reaction of cyclohexanol with d-glucose in a biphase system catalyzed by α-glucosidase and β-glucosidase, respectively. The effects of pH, water content, glucose concentration and metal ions on the yield of glucosides were studied. The optimum catalytic conditions established for α-glucosidase was 25% (v/v) water content, 2.5 mol/L glucose concentration and pH 2.0, and for β-glucosidase was 30% (v/v) water content, 2.0 mol/L glucose and pH 5.0. The maximum yield of glucoside was 13.3 mg/mL for cyclohexyl-α-d-glucoside and 8.9 mg/mL for cyclohexyl-β-d-glucoside. Synthesis progress was monitored by TLC and quantitatively analyzed by pre-derived capillary gas chromatography (GC). The retention time was 12.34 min for the α isomer and 12.96 min for the β isomer, respectively. With an anomeric purity of more than 99.5%, the two glucosides display excellent site-specific catalysis by α- and β-glucosidase. Herein, we present a general method to produce anomerically pure glucosides via a one-step bio-reaction in a biphase system. This method could potentially be applied in glucosylation of primary and secondary alcohols or other reactions requiring glucosylation. 相似文献
6.
Tozzi R Mulinacci N Storlikken K Pasquali I Vincieri FF Bettini R 《AAPS PharmSciTech》2008,9(2):693-700
The purpose of this research was to preliminary assess the suitability of a new method for the preparation of a solid formulation
in form of powder composed by β-cyclodextrin and the supercritical extract of Rosa canina hips. The method implies the extraction of carotenoids, in particular β-carotene, from freeze dried fruits of R. canina with supercritical CO2 at 70 °C and 300 bar, in the presence of varying quantity of ethanol as entrainer. The obtained supercritical solution is
then expanded at ambient conditions into an aqueous solution of β-cyclodextrin to favour the interaction between β-cyclodextrin
and the lipophilic components of the extract. β-carotene solubility (mole fraction) in supercritical CO2 or in supercritical CO2/ethanol mixtures were in the order of 1 10−7. The β-carotene extracted from R. canina fruits (nearly 10 μg/g of dry matrix), interacts almost quantitatively with β-cyclodextrin affording a solid phase, which
presents a low apparent solubility in water. Finally the interaction with β-cyclodextrin results in a higher concentration
of the β-carotene trans- form relative to the cis- form in the extracted product when collected in an aqueous solution of β-cyclodextrin with respect to the extract in n-hexane. 相似文献
7.
Metal-tolerant Datura innoxia cells synthesize large amounts of cadystin, [poly(-glutamylcysteinyl) glycines, (-EC)nG, n=2–5], a class of metal-binding polypeptides, when exposed to Cd. These polypeptides have a high affinity for Cd (II) and certain other metal ions and are thought to play a role in metal tolerance in higher plants. Cells rapidly synthesize these metal-binding polypeptides when exposed to Cd and cellular concentrations of glutathione and cysteine, precursors for the synthesis of these compounds, are initially depleted then rapidly replenished. The time-frame of de novo polypeptide, glutathione and cysteine biosynthesis suggests that this pathway is, at least initially, regulated at the enzyme level. Significant amounts of Fe are associated with Cd: polypeptide complexes isolated from D. innoxia. Exposure of cultures to Cd results in an increased Fe accumulation by the cells. All the additional Fe found in the soluble portion of cell extracts is associated with the Cd: polypeptide complexes. The physiological significance of the synthesis of these polypeptides and their precursors and its relevance to Cd tolerance and metal homeostasis are discussed. 相似文献
8.
9.
Biosynthesis of α- and β-ionone, prominent scent compounds, in flowers of Osmanthus fragrans 总被引:1,自引:0,他引:1
Carotenoid derived volatiles are important fragrance compounds, which contribute to the scents of flowers from diverse taxa. A famous example is represented by the flowers of Osmanthus fragrans where apocarotenoids account for more than 20% of all volatiles. In the recent years, bio-degradation of carotenoids has been shown to be an important route for apocarotenoids formation. Here, we report on the contribution the O. fragrans carotenoid cleavage dioxygenase 1 to the synthesis of the two predominant C(13)-apocarotenoids, α- and β-ionone, derived from α-and β-carotene, respectively. 相似文献
10.
11.
-Defensin genes code for multifunctional peptides with a broad-range antimicrobial activity. In this project we hypothesized that -defensin genes may be candidate genes for resistance to mastitis. In this article we describe the identification and genomic characterization of eight bovine -defensin genes, including six novel defensin genes and two pseudogenes. Expression in the bovine mammary gland of one of the novel genes, DEFB401, has been demonstrated, as well as the expression of LAP, TAP, DEFB1, BNBD3, BNBD9, and BNBD12. For genomic characterization, 20 BACs from two different bovine BAC libraries (RZPD numbers 750 and 754) were isolated by PCR screening with -defensin consensus primers derived from published sequences. PCR products from BACs generated with consensus primers have been subcloned and sequenced, revealing a total of 16 genes and two pseudogenes. Six novel -defensin genes share the typical exon–intron structure and are highly homologous to published bovine -defensin genes. They are named DEFB401–DEFB405 and LAP-like, and two novel pseudogenes are named EBD-P and EBD-P2. Analysis of mammary gland tissue-derived cDNA from nine cows with different clinical findings demonstrated the expression of several -defensin genes mentioned above. First results indicate that the lactational status of the cow presumably has no influence on gene expression. Competent knowledge of antimicrobial activity of -defensins from literature, the abundance of -defensin mRNA in the bovine mammary gland, and the inducibility of some genes give first evidence that -defensins may play a role in local host defense during udder infections.The nucleotide sequence data reported in this article have been submitted to EMBL and have been assigned the accession numbers AJ563279–AJ563283, AJ567353–AJ567365, AJ567990–AJ567993, and AJ620296. 相似文献
12.
Cysteine is implicated in important biological processes. It is synthesized through two different pathways. Cystathionine β-synthase and cystathionine γ-lyase participate in the reverse transsulfuration pathway, while serine acetyltransferase and cysteine synthase function in the de novo pathway. Two evolutionarily related pyridoxal 5′-phosphate-dependent enzymes, cystathionine β-synthase TtCBS1 (TTHERM_00558300) and cysteine synthase TtCSA1 (TTHERM_00239430), were identified from a freshwater protozoan Tetrahymena thermophila. TtCbs1 contained the N-terminal heme binding domain, catalytic domain, and C-terminal regulatory domain, whereas TtCsa1 consisted of two α/β domains. The catalytic core of the two enzymes is similar. TtCBS1 and TtCSA1 showed high expression levels in the vegetative growth stage and decreased during the sexual developmental stage. TtCbs1 and TtCsa1 were localized in the cytoplasm throughout different developmental stages. His-TtCbs1 and His-TtCsa1 were expressed and purified in vitro. TtCbs1 catalyzed the canonical reaction with the highest velocity and possessed serine sulfhydrylase activity. TtCsa1 showed cysteine synthase activity with high Km for O-acetylserine and low Km for sulfide and also had serine sulfhydrylase activity toward serine. Both TtCbs1 and TtCsa1 catalyzed hydrogen sulfide producing. TtCBS1 knockdown and TtCSA1 knockout mutants affected cysteine and glutathione synthesis. TtCbs1 and TtCsa1 are involved in cysteine synthesis through two different pathways in T. thermophila. 相似文献
13.
Fruits of tomato incorporated [2-14C]mevalonic acid lactone into the steroidal glycoalkaloid α-tomatine. Young fruits showed the greatest alkaloid-synthesizing ability but this decreased as the fruits developed. Analysis of sap exuded from fruit stalks and also application of[4-14C]cholesterol to leaves confirmed that tomatine is not transported into fruits from vegetative organs. Accumulation of this alkaloid in fruits thus appears entirely due to synthesis. Excised fruits of all developmental stages degraded injected [14C]tomatine and rates were directly related to fruit age. The pattern of accumulation/decline in fruit tomatine may be explicable on the basis of changing capacity for synthesis/degradation during development. Label from injected [14C]tomatine was present mainly in chlorophylls and carotenoids where it increased with time as that in tomatine decreased. The significance of the relationship between tomatine disappearance and carotenoid development is briefly discussed. The aglycone tomatidine was not detected in green fruits but a Δ16-5α-pregnenolone-like compound was. 相似文献
14.
Steven W. Mast Lloyd Donaldson Kirk Torr Lorelle Phillips Heather Flint Mark West Timothy J. Strabala Armin Wagner 《Plant physiology》2009,150(2):573-583
Softwood species such as pines react to gravitropic stimuli by producing compression wood, which unlike normal wood contains significant amounts of β(1,4)-galactan. Currently, little is known regarding the biosynthesis or physiological function of this polymer or the regulation of its deposition. The subcellular location of β(1,4)-galactan in developing tracheids was investigated in Pinus radiata D. Don using anti-β(1,4)-galactan antibodies to gain insight into its possible physiological role in compression wood. β(1,4)-Galactan was prominent and evenly distributed throughout the S2 layer of developing tracheid cell walls in P. radiata compression wood. In contrast, β(1,4)-galactan was not detected in normal wood. Greatly reduced antibody labeling was observed in fully lignified compression wood tracheids, implying that lignification results in masking of the epitope. To begin to understand the biosynthesis of galactan and its regulation, an assay was developed to monitor the enzyme that elongates the β(1,4)-galactan backbone in pine. A β(1,4)-galactosyltransferase (GalT) activity capable of extending 2-aminopyridine-labeled galacto-oligosaccharides was found to be associated with microsomes. Digestion of the enzymatic products using a β(1,4)-specific endogalactanase confirmed the production of β(1,4)-galactan by this enzyme. This GalT activity was substantially higher in compression wood relative to normal wood. Characterization of the identified pine GalT enzyme activity revealed pH and temperature optima of 7.0 and 20°C, respectively. The β(1,4)-galactan produced by the pine GalT had a higher degree of polymerization than most pectic galactans found in angiosperms. This observation is consistent with the high degree of polymerization of the naturally occurring β(1,4)-galactan in pine.The ability to respond to gravitropic stimuli is important for the survival of most terrestrial plants. Arborescent angiosperm and gymnosperm species generate wood with modified properties, called reaction wood, in response to gravitropic stimuli (Timell, 1969, 1986; Du and Yamamoto, 2007). The formation of reaction wood enables the return of bent stems to a vertical orientation. Interestingly, the location and type of the reaction wood deposited in woody gymnosperms and angiosperms generally differs significantly. Gymnosperms respond to gravitropic stimuli by compression wood formation on the underside of leaning stems (Timell, 1986), and arboreal angiosperms generate reaction wood primarily in the form of tension wood on the upper side of inclined stems (Timell, 1969).Compression wood in conifers differs significantly from normal wood in its anatomical, chemical, and physical properties. Typical anatomical features of severe compression wood are short, rounded, and thick-walled tracheids with a prominent band of lignin in the outer S2 layer of the cell wall as well as spiral checks and the absence of an S3 layer (Timell, 1986). Biochemically, compression wood is characterized by high levels of lignin, rich in condensed p-hydroxyphenyl units, as well as reduced cellulose and galactoglucomannan relative to normal wood (Timell, 1986; Nanayakkara et al., 2005; Yeh et al., 2006). Most striking, though, is that β(1,4)-galactan can constitute more than 10% (w/w) of the cell wall material in severe compression wood but is virtually absent in normal wood (Nanayakkara et al., 2005; Yeh et al., 2006). Recent work suggests that β(1,4)-galactan biosynthesis represents an early step in compression wood formation and confirms that its presence is diagnostic for this wood type (Altaner et al., 2007). However, the molecular signal cascades in conifers that lead to the deposition of β(1,4)-galactan are currently not well understood.Immunological studies in conifer species using the monoclonal anti-β(1,4)-galactan LM5 antibody (Jones et al., 1997) indicate that β(1,4)-galactan in compression wood is located in the S1 and outer S2 layers of mature tracheids but is virtually absent from the primary cell walls (Schmitt et al., 2006; Altaner et al., 2007; Möller and Singh, 2007). Instead of β(1,4)-galactan, most conifers contain small amounts of arabinogalactan, a polysaccharide characterized by a highly branched β(1,3)-galactan backbone (Vikkula et al., 1997; Willför et al., 2002; Laine et al., 2004) in their primary cell walls. The ultrastructural distribution of β(1,4)-galactan in compression wood appears to be largely consistent with highly lignified cell wall layers (Möller and Singh, 2007), which might explain the involvement of β(1,4)-galactan in the formation of lignin-carbohydrate complexes (Mukoyoshi et al., 1981; Minor, 1982; Timell, 1986; Laine et al., 2004).The investigation of β(1,4)-galactan structure in preparations from Pinus sylvestris (Laine et al., 2004) and Pinus radiata (Nanayakkara 2007) revealed a linear polymer. In Pinus densiflora Siebold & Zucc., β(1,4)-galactan was found to be slightly branched at positions C2, C3, and C6 (Mukoyoshi et al., 1981). β(1,4)-Galactan in conifers display a high degree of polymerization (DP), which was originally estimated to be in the range of 200 to 300 (Timell, 1986). More recent studies with P. radiata compression wood found the native polysaccharide to have a DP of approximately 380 (Nanayakkara 2007).β(1,4)-Galactan is a very good biochemical marker for compression wood (Altaner et al., 2007), but its physiological role is currently not well understood. Various functions for β(1,4)-galactan in compression wood have been proposed, such as strengthening of the secondary cell wall, absorption of mechanical stresses, and generation of compressive forces (Möller and Singh, 2007). Furthermore, β(1,4)-galactan is also found in tension wood, with a proposed role in cross-linking cellulose microfibrils (Arend, 2008). However, all of those hypotheses on the molecular function of β(1,4)-galactan in reaction wood await experimental verification.Despite substantial efforts to characterize the biosynthesis of this polymer, β(1,4)-galactan biosynthetic enzymes and their corresponding genes are currently unknown (Peugnet et al., 2001; Geshi et al., 2002, 2004; Abdel-Massih et al., 2003; Kato et al., 2003; Ishii et al., 2004; Konishi et al., 2004, 2007; Gorshkova and Morvan, 2006). However, based on other cell wall polysaccharide biosynthetic enzymes, it is likely that the enzymes involved in the biosynthesis of β(1,4)-galactan are either Golgi localized or pass through the Golgi in transit to the apoplastic space (Reyes and Orellana, 2008).To better understand β(1,4)-galactan synthesis in compression wood formation, we sampled both normal wood and severe compression wood from two 6-year-old P. radiata trees, which displayed stark differences in lignin and carbohydrate content and composition. Using these wood samples, new insights into the subcellular localization of β(1,4)-galactan in pine were generated using confocal laser fluorescence microscopy and transmission electron microscopy. An enzyme assay was developed, based on 2-aminopyridine (2AP)-labeled galacto-oligosaccharides as acceptor molecules, which we used to identify and partially purify a robust, microsome-associated, UDP-Gal-dependent β(1,4)-galactosyltransferase (GalT) activity in compression wood that was virtually undetectable in normal wood. Assays of the partially purified GalT revealed that this enzyme has some properties similar to those of previously characterized pectic GalTs, but a marked difference was observed in the size distribution of the enzymatic products. 相似文献
15.
Hyunwoo Jeon Sharad Sarak Sang-Hyuk Lee Han-Seop Bea Mahesh Patil Geon-Hee Kim Byung-Gee Kim Jong In Won Hyungdon Yun 《Biotechnology and Bioprocess Engineering》2018,23(5):481-489
Optically pure amines, β-amino acids and γ-amino acids are the valuable precursors to produce biologically active compounds. The ω-TAs are the class of enzymes which are widely used to produce such compounds. In this work (S)-ω-transaminase from the thermophilic eubacterium Sphaerobacter thermophilus (St-TA) was fused with Elastin-like polypeptides (ELPs) through the cloning process and expressed in E. coli cells. The characterization of this fusion complex was performed with respect to thermostability and effect of DMSO. Where in case of St-TA-ELP-V60, major difference in the transition temperature (Tt) was observed, wherein a Tt of 38 and 70°C was observed at the increasing concentration of DMSO from 5 to 25% (v/v). Interestingly, these fusion proteins the activity was preserved even after the aggregation of fusion complex at Tt. The substrate specificity and product inhibition analysis showed that ω-TA-ELPs had comparable results as that of wild type ω-TA. Moreover, the fused ω-TA could be efficiently reused for up to 20 batches of transamination reaction. Furthermore, the applicability of the fusion protein for the production of a sitagliptin precursor (R)-3-amino-4-(2,4,5-triflurophenyl) butanoic acid (3-ATfBA) was evaluated, wherein 3-ATfBA was synthesized with good conversion (65%). 相似文献
16.
N. G. Esipova L. E. Ragulina L. I. Davydova V. M. Lobachev V. Yu. Makeev V. G. Bogush V. G. Tumanyan V. G. Debabov 《Biophysics》2009,54(3):271-274
The distribution of secondary structure elements along the polypeptide chains of spider silk proteins spidroins 1 and 2 and
their recombinant analogs has been studied by statistical methods. It was found that these proteins as monomers contain only
traces of β-structure, while the Ala-rich and the Gly-rich regions are predicted as α-helices and as left-handed helices of
polyproline II type. Analysis of literature and our CD data shows that the major polypeptide chain conformation of spidroins
1 and 2 and their recombinant analogs in aqueous solutions is the polyproline II helix, with some α-helices and a very small
share of β-structures. The transition to the state with extended conformations, which are characteristic of mature silk fibers,
requires dehydration of the polypeptide backbone. Thus, the genesis of β-structure in spider web proteins is determined by
the conditions of transitions between the main regular backbone conformations. 相似文献
17.
Jun Feng Jun Wu Jie Gao Zhigui Xia Zixin Deng Xinyi He 《Applied and environmental microbiology》2014,80(16):5021-5027
The peptidyl nucleoside arginomycin is active against Gram-positive bacteria and fungi but displays much lower toxicity to mice than its analog blasticidin S. It features a rare amino acid, β-methylarginine, which is attached to the deoxyhexose moiety via a 4′-aminoacyl bond. We here report cloning of the complete biosynthetic gene cluster for arginomycin from Streptomyces arginensis NRRL 15941. Among the 14 putative essential open reading frames, argM, encoding an aspartate aminotransferase (AAT), and adjacent argN, encoding an S-adenosyl methionine (SAM)-dependent methyltransferase, are coupled to catalyze arginine and yield β-methylarginine in Escherichia coli. Purified ArgM can transfer the α-amino group of l-arginine to α-ketoglutaric acid to give glutamate and thereby converts l-arginine to 5-guanidino-2-oxopentanoic acid, which is methylated at the C-3 position by ArgN to form 5-guanidino-3-methyl-2-oxopentanoic acid. Iteratively, ArgM specifically catalyzes transamination from the donor l-aspartate to the resulting 5-guanidino-3-methyl-2-oxopentanoic acid, generating β-methylarginine. The complete and concise biosynthetic pathway for the rare and bioactive amino acid revealed by this study may pave the way for the production of β-methylarginine either by enzymatic conversion or by engineered living cells. 相似文献
18.
Summary A number of -glucanase active enzyme preparations were successfully immobilized either by adsorption on Duolite S-761 phenol-formaldehyde resin or covalently on silanized Spherosil XOB-075 porous silica beads to obtain remarkably stable active biocatalysts. A Duolite immobilized -glucanase could be employed for continuous treatment of barley wort in a packed-bed column reactor to decrease viscosity and to improve filtrability. A Duolite immobilized cellulase that exhibited no detectable Avicel hydrolyzing activity could be applied for batch treatment of wheat starch process water. The same enzyme when covalently bound on Spherosil was, however, capable of hydrolyzing microcrystalline cellulose in a recirculating fluidized-bed reactor. 相似文献
19.
《Bioscience, biotechnology, and biochemistry》2013,77(10):1734-1735
Two unidentified sugars were isolated from rose petals using HPLC. The isolated compounds were identified as methyl β-glucopyranoside and xylose using 1H-NMR, 13C-NMR, and GC-MS. Methyl β-glucopyranoside and xylose were distributed in three cultivars tested relatively in large amounts. These results indicate that methyl β-glucopyranoside and xylose occur universally as soluble sugar constituents in roses. 相似文献
20.