首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three 5 l working volume fermenters were used to investigate the growth of the yeast Kluyveromyces fragilis in acid cheese whey under ambient temperature in order to assess the specific growth rate and yield, the lactose and oxygen uptake rates during the various phases of batch culture, the effect of increasing temperature on the various kinetic parameters, and the need for a cooling unit for single cell production batch systems. The initial dissolved oxygen in the medium was 5.5 mg l–1 and the pH was maintained at 4.5. The observed lag phase, specific growth rate and maximum cell number were 4 h, 0.2 h–1 and 8.4 × 108 cells ml–1, respectively. About 99% of the lactose in cheese whey was utilized within 20 h, 85% during the exponential growth phase. The specific lactose utilization rates by K. fragilis were 0.20 × 10–12, 1.457 × 10–12, 0.286 × 10–12 and 0.00 g lactose cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The dissolved oxygen concentration in the medium decreased as the cell number increased. The lowest oxygen concentration of 1.2 mg l–1 was observed during the stationary phase. The volumetric oxygen transfer coefficient was 0.41 h–1 and the specific oxygen uptake rates were 0.32 × 10–12, 2.14 × 10–12, 0.51 × 10–12 and 0.003 × 10–12 mg O2 cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The maximum temperature recorded for the medium was 33 °C, indicating that a cooling unit for batch production of single cell protein at ambient temperature is not needed for this type of bioreactor. The increase in medium temperature affected the cell growth and the lactose and oxygen uptake rates.  相似文献   

2.
It was observed that dry weight yield is not a sensitive parameter withwhich to assess lead toxicity to plants. Elongation growth of corn seedlingroots was more sensitive to lead than shoot growth and was inhibited by allconcentrations tested (10–5, 10–4, and 10–3 M).It was positively correlated with potassium concentration and negativelycorrelated with lead concentration in the roots. Negative correlation also wasobserved between lead concentration and potassium concentration in roots. It ispostulated that inhibition of corn root growth is connected with potassiumleakage from root cells. The toxic action of lead on corn seedling mesocotylandcoleoptile growth was not correlated with potassium concentration in planttissue and correlation between growth and lead concentration was low. Inseedlings treated with 10–4 and 10–3 M lead the growthof mesocotyl and coleoptile was affected similarly, although the concentrationof lead was threefold higher in mesocotyl tissue than in coleoptile tissue. It isproposed that depression of corn seedlings shoot growth is not an effect ofpotassium leakage or lead accumulation but of an unknown signal induced inroots, as a response to exposure to lead, which is transmitted to shoots. Thepositive correlation between lead and calcium concentrations found in seedlingroots might be connected with high constitutional tolerance of corn to lead.Since the first 8 mm of an apical root accounts for 50% of thelead accumulated by the whole root, it is postulated that rhizofiltration oflead contaminated waters should be more efficient when plant species withhighly branched root systems are used.  相似文献   

3.
The effects of different fertilization regimes on root growth characteristics, nutrient uptake and biomass production of Japanese larch (Larix kampferi Sarg.) and its hybrid larch (L. gmelinii × L. kampferi) seedlings were examined for one growing season. Seedlings were raised in the greenhouse under three fertilizer levels (10, 20, 40 mg N seedling–1 season–1) and two delivery schedules, conventional (C) and exponential (E) for 12 weeks. Root growth, biomass allocation and nutrient loading capacity of seedlings were measured for a 3-week interval. By the end of growing season, seedlings fertilized with low dose conventionally (10C) and exponentially (10E) developed relatively longer root and larger root surface areas than those fertilized at high dose exponential loading (40E). At final harvest, the 40E treated Japanese larch had 134% and 155% more shoot mass as compared with those raised under 20E and 10E treated seedlings, respectively. The seedlings fertilized under 10C and 10E showed a high root mass ratio, while 40E treated seedlings showed a low root mass ratio. These data indicated that different nutrient levels (10 mg, 20 mg and 40 mg) strongly affected root growth characteristics. The same seasonal dose (10 mg) applied exponentially (10E) accumulated more N in seedlings compared to the 10C treatment. Exponential fertilization enhanced an increase in N concentration of the whole plant suggesting exponential delivery schedule is an efficient fertilization technique for greater nutrient uptake of plants. In contrast, N concentration of whole plant was declined for seedlings treated with conventional fertilization due to growth dilution. Late in the growing season, seedlings raised under 40E did not significantly improved dry mass production of root, but nutrient accumulation increased without a concomitant increased in root dry mass production. The result suggests that seedlings fertilized exponentially at medium and high dose rates (20E and 40E) induced luxury nutrient consumption within the plant.  相似文献   

4.
The effects of the cytokinin benzyladenine (BA) and the auxin naphthalene acetic acid (NAA) on Camptotheca acuminata Decaisne growth and camptothecin (CPT) accumulation (leaf CPT concentration and total leaf CPT yield) were studied in a hydroponic culture system for three weeks. Increasing BA concentrations from 0 to 3 mg l–1 in growth medium decreased plant height, stem weight, and leaf weight but increased root weight. High BA levels (1 and 3 mg l–1) increased leaf CPT concentration (% of dry weight), whereas BA applications had no effect on total leaf CPT yield, the product of leaf CPT concentration and total leaf dry weight per seedling. There was a positive correlation between root weight and leaf CPT concentration under BA treatments. NAA supplementations (from 0.5 to 4 mg l–1) to growth medium reduced plant height, leaf number, leaf length, specific leaf weight, plant weight, stem weight, and leaf weight compared with the NAA control. Meanwhile, there were no differences in plant height, leaf length, and specific leaf weight among the NAA supplementations. NAA applications had no effect on leaf CPT concentration and NAA applications decreased total leaf CPT yield. There were negative correlations between leaf number and leaf CPT concentration, leaf length and leaf CPT concentration under NAA treatments. Our results suggest that BA applications from 0.3 to 3 mg l–1 are not helpful for achieving high total leaf CPT yield and NAA applications from 0.5 to 4 mg l–1 decrease total leaf CPT yield.  相似文献   

5.
A collection of bacterial strains obtained from a wide-range origin was screened for ability to promote growth in two types of Prunus rootstocks in a commercial nursery. Only few strains promoted growth significantly and consistently, and a strong specificity for the rootstock cultivar was observed. Irrigation of plants with Pseudomonas fluorescens EPS282 and Pantoea agglomerans EPS427 significantly increased plant height and root weight of the plum Marianna 2624 and the peach–almond hybrid GF-677, respectively. Plant height showed a higher rate of growth in early stages of development (2.6–3.5 times the non-treated controls), but the effect decreased with plant age. However, in aged plants growth promotion was more significant on root weight (1.9 times the non-treated controls) than on plant height. The efficacy of growth promotion and the persistence of strains in the root environment were dependent on the bacterial inoculum concentration applied. Increases in root development were maximum at inoculum concentrations of up to 8 log10 CFU ml–1 (ca 10 log10 CFU L–1 of potting mix). Population levels at the optimum inoculum concentration were around 7 log10 CFU g f.w.–1 root material at early stages of development and decreased to 4 log10 CFU g f.w.–1 after several months of development. The best plant growth-promoting strains were very diverse in secondary metabolite production and antagonistic ability against several plant pathogens.  相似文献   

6.
The stump and root systems of Scots pine (Pinus sylvestris) and field-layer vegetation were sampled before (1984) and three growing seasons after drainage and fertilization (1987) of a low-shrub pine bog. Average below-ground biomass of the field layer was 548 gDW m–2 in 1984, with no significant treatment effects during experimentation. The stump-plus-root biomass of the pine stands was 1464 gDW m–2 in the virgin state, and had increased to 1854 gDW m–2 three years after the NPK-fertilizer treatment. The distribution over fractions also changed with this treatment. The fraction of fine roots ( < 1 mm) in stump-root biomass increased from 4% (56 gDW m–2) to 11% (196 gDW m–2), while the other compartments changed less. Total pine root length was 729 mm–2 in 1984. Root length increased by 94% to 1380 mm–2 on NPK-fertilized plots. Most of the fine pine roots were in the surface layer (0–10 cm), 79% in 1984 and 88% in 1987, and few pine roots were deeper than 20 cm. Maximum root length of fine pine roots ( < 1 mm) was estimated to be 2710 mm–2 at about 800 gDW m–2 (NPK treatment), and the corresponding maximum for small pine roots (=1–10 mm) was 227 mm–2 at 809 gDW m–2. Drainage stimulated net growth of fine roots, but this treatment also caused higher mortality rates of small roots. The fine roots responded to fertilization with higher net growth rate, and secondary growth of the large roots ( > 10 mm) was improved. The observed changes in root biomass and structure are explained as strategic adaptations to altered hydrological and nutritional circumstances in the root zone after drainage and fertilization.  相似文献   

7.
The apical 2 cm of seedling roots of oilseed rape (Brassica napus L., cv. Primor) produced more ethylene than adjacent, older tissue. Treatment with 5 × 10–3 mol m–3 3,5-diiodo4-hydroxybenzoic acid (DIHB), a presumed inhibitor of ethylene action, failed to stimulate root extension. Larger concentrations were inhibitory. Ethylene, applied as ethephon decreased root extension but DIHB (5 × 10–3 mol m–3) partially overcame this effect. Oxygen concentrations below that present in air also inhibited root extension but this was not ameliorated by DIHB.Roots of barley seedlings (Hordeum vulgare L., cv. Midas) evolved ethylene more slowly than roots of oilseed rape. DIHB (10–3–10–2 mol m–3) stimulated root extension in the absence of ethephon. Ethephon alone retarded root extension but DIHB partially overcame this inhibition. Small concentrations of oxygen also inhibited root extension but DIHB failed to ameliorate the effect even though the slow growth of oxygen-deficient roots (3–5% oxygen) was associated with abnormally fast rates of endogenous ethylene production.Extension growth in different oxygen concentrations was more closely associated with rates of oxygen consumption than with the amount of ethylene produced. Thus respiration rather than ethylene appeared to limit root extension under oxygen deficiency. This may explain why DIHB was unable to offset this form of environmental stress.  相似文献   

8.
The effects of root-zone salinity (0, 30, and 60 mmol L–1 of NaCl) and root-zone temperature (10, 15, 20, and 25°C) and their interactions on the number of tillers, total dry matter production, and the concentration of nutrients in the roots and tops of barley (Hordeum vulgare L.) were studied. Experiments were conducted in growth chambers (day/night photoperiod of 16/8 h and constant air temperature of 20°C) and under water-culture conditions. Salinity and root temperature affected all the parameters tested. Interactions between salinity and temperature were significant (p<0.05) for the number of tillers, growth of tops and roots, and the concentration of Na, K, P in the tops and the concentration of P in the roots. Maximum number of tillers and the highest dry matter were produced when the root temperature was at the intermediate levels of 15 to 20°C. Effect of salinity on most parameters tested strongly depended on the prevailing root temperature. For example, at root temperature of 10°C addition of 30 mmol L–1 NaCl to the nutrient solution stimulated the growth of barley roots; at root temperature of 25°C, however, the same NaCl concentration inhibited the root growth. At 60 mmol L–1, root and shoot growth were maximum when root temperature was kept at the intermediate level of 15°C; most inhibition of salinity occurred at both low (10°C) and high (25°C) root temperatures. As the root temperature was raised from 10 to 25°C, the concentration of Na generally decreased in the tops and increased in the roots. At a given Na concentration in the tops or in the roots, respective growth of tops or roots was much less inhibited if the roots were grown at 15–20°C. It is concluded that the tolerance of barley plant to NaCl salinity of the rooting media appears to be altered by the root temperature and is highest if the root temperature is kept at 15 to 20°C.  相似文献   

9.
Bulbous rush (Juncus bulbosus) is a pioneer species in acidic, iron-rich, coal mining lakes in the eastern part of Germany. Juncus roots are coated with iron plaques, and it has been suggested that microbial processes under the iron plaques might be supportive for Juncus plant growth. The objectives of this work were to enumerate the microbes involved in the turnover of iron and organic root exudates in the rhizoplane, to investigate the effect of oxygen and pH on the utilization of these exudates by the rhizobacteria, and to study the ability of the root-colonizing microbiota to reduce sulfate. Enumeration studies done at pH 3 demonstrated that 106 Fe(III) reducers and 107 Fe(II) oxidizers g (fresh wt root)–1 were associated with Juncus roots. When roots were incubated in goethite-containing medium without and with supplemental glucose, Fe(II) was formed at rates approximating 1.1 mmol g (fresh wt root) –1 d–1 and 3.6 mmol g (fresh wt root)–1 d–1 under anoxic conditions, respectively. These results suggest that a rapid microbially mediated cycling of iron occurs in the rhizosphere of Juncus roots under changing redox conditions. Most-probable-number estimates of aerobes and anaerobes capable of consuming root exudates at pH 3 were similar in the rhizosphere sediment and in Juncus roots, but numbers of aerobes were significantly higher than those of anaerobes. At pH 3, supplemental organic exudates were primarily subject to aerobic oxidation to CO2 and not subject to fermentation. However, at pH 4.5, root exudates were also rapidly utilized under anoxic conditions. Root-associated sulfate reduction was not observed at pH 3 to 4.5 but was observed at pH 4.9. The pH increased during all root-incubation studies both under oxic and anoxic conditions. Thus, as result of the microbial turnover of organic root exudates, pH and CO2 levels might be elevated at the root surface and favor Juncus plants to colonize acidic habitats.  相似文献   

10.
Summary The growth parameters ofPenicillium cyclopium have been evaluated in a continuous culture system for the production of fungal protein from whey. Dilution rates varied from 0.05 to 0.20 h–1 under constant conditions of temperature (28°C) and pH (3.5). The saturation coefficients in the Monod equation were 0.74 g l–1 for lactose and 0.14 mg l–1 for oxygen, respectively. For a wide range of dilution rates, the yield was 0.68 g g–1 biomass per lactose and the maintenance coefficient 0.005 g g–1 h–1 lactose per biomass, respectively. The maximum biomass productivity achieved was 2 g l–1 h–1 biomass at dilution rates of 0.16–0.17 h–1 with a lactose concentration of 20 g l–1 in the feed. The crude protein and total nucleic acid contents increased with a dilution rate, crude protein content varied from 43% to 54% and total nucleic acids from 6 to 9% in the range of dilution rates from 0.05 to 0.2 h–1, while the Lowry protein content was almost constant at approximately 37.5% of dry matter.Nomenclature (mg l–1) Co initial concentration of dissolved oxygen - (h–1) D dilution rate - (mg l–1) K02 saturation coefficient for oxygen - (g l–1) Ks saturation coefficient for substrate - (g g–1 h–1) lactose per biomass) m maintenance energy coefficient - (mM g–1 h–1O2 per biomass) Q02 specific oxygen uptake rate - (g l–1) S residual substrate concentration at steady state - (g l–1) So initial substrate concentration in feed - (min) t1/2 time when Co is equal to Co/2 - (g l–1) X biomass concentration - (g l–1) X biomass concentration at steady state - (g g–1 biomass per lactose) YG yield coefficient for cell growth - (g g–1 biomass per lactose) Yx/s overall yield coefficient - (h–1) specific growth rate  相似文献   

11.
Summary The growth and nitrogen uptake response of rape plants to nitrate concentration at the root surface were studied in solution culture in a controlled environment cabinet over a period of 24 days. NO3 was supplied at the rates of 10–5 M, 5×10–5 M, 10–4 M, 10–3 M and 10–2 M in solution and was maintained near these levels.With increasing mean N concentration in the tissues, the relative growth rate and leaf area ratio increased and unit leaf rate decreased slightly. Values of all three growth parameters decreased with plant age.The shoot: root dry weight ratios and their N content ratios increased with increasing mean per cent N in the plant. The length or surface area per unit dry weight of roots was correlated negatively with per cent N and positively with age.The maximum mean inflow of nitrate to rape roots decreased sharply with age. The concentration at which half maximal mean inflow was attained was 3.44×10–5 M NO3 .  相似文献   

12.
Reassessement of bioenergetic growth yield of Arthrospira platensis was performed by using continuous culture under both autotrophic and mixotrophic conditions. Continuous culture was carried out at dilution rates of 0.017, 0.023 and 0.030 h–1. Under these dilution rates bioenergetic yields ranged between 4.45–6.03 × 10–3 g biomass kJ–1 and between 5.42–7.46 × 10–3 g biomass kJ–1, under autotrophic and mixotrophic conditions respectively. A maximum bioenergetic yield of 8.1 × 10–3 g biomass kJ–1 using an autotrophic culture can be calculated. Pigment accumulation (chlorophyll a and carotenoids) may be related to light irradiance, reaching a maximum pigment concentration under light saturation irradiance. Phycocyanin concentration increased during light limitation.  相似文献   

13.
The effect of application of the fungicide pentachloronitrobenzene (PCNB) at levels between 2 and 50 mg kg–1 soil on root growth, mycorrhizal infection and P uptake was studied in pot culture with oats (Avena sativa cv. Alfred) growing in a rendzina soil low in available P. The soil had been partially sterilized by X-ray, and half of the pots were inoculated with spores of the VAM-fungusGlomus mosseae (indigenous species).Soil irradiation (0.5 Mrad) did not decrease the levels of infection by VAM. Application of PCNB decreased the VAM-infected root length, at 50 mg PCNB kg–1 soil VAM-infected root length was about 12% of the controls. Total root length, however, increased to about 126% of control values at PCNB rates up to 20 mg kg–1 soil, but decreased to 89% of the controls at 50 mg kg–1 soil. Total P-uptake decreased with increasing levels of PCNB and was linearly correlated with infected root length (r=0.92).The stimulation of root growth by PCNB at rates up to 20 mg kg–1 soil is regarded as an indirect effect, brought about by suboptimal P-supply due to inhibition of VA-mycorrhiza. Conversely, the reduction of total root length at 50 mg PCNB kg–1 soil is most likely a direct effect. Due to the phytotoxicity of the fungicide, the contribution of the indigenous VA-mycorrhiza to plant P uptake under field conditions cannot be determined by soil application of PCNB at rates sufficient for complete inhibition of VAM.As inhibition or absence of VAM may lead to compensatory root growth, mycorrhizal dependency ought to be calculated from the amounts of P taken up per unit root length in mycorrhizal and nonmycorrhizal plants, respectively.  相似文献   

14.
A high-density-cell fermentation process for production of an exracellular alginat lyase from Klebseilla pneumoniae on a defined medium has been developed. The process employs a strategy using two carbon sources. One low-molecular-mass, low-viscosity carbon source (sucrose) with high water solubililty is used as the main carbons source for growth, while the high-molecular-mass and viscoous alginate in low concentration is used as an inducer for enzyme synthesis. The repression of algiante lyase production by sucrose and the growth inhibition that we observed at increased levels of ammonia were circumvented by a computer-assisted fed-batch addition of the carbon sources (succrose and alginate) and by supplying nitrogen source as ammonia in the pH control. No enzyme production was observed when dissolved oxygen limited growth at an oxygen uptake rate of 40%–50% of the maximum uptake rate. An optimal composition of the feeding solution (12.5 g alginate and 587.5 g sucrose 1–1) was found both for the maximum final concentration of enzyme (1330 U 1–1) and for the maximum volumetric rate of enzyme production (67 U 1–1 h–1). The enzyme production dependes of the growth rate in the linear growth phase, giving a maximum enzyme concentration at the highest growth rate tested. The final enzyme concentration shows a fiveflod increase compare with previously reproted daata where alginate was used as a carbon source. In addition, the ratio of alginate lyase by a factor of apporximately 15. A doubling in extracellular specific activity of the enzyme was observed, a property of significant interest, especially for purification of the enzyme. On the othr hand, the final dry cell weight concentration of the bacteria also increased by a factor of 15–20 thus giving a relatively lower specific productivity of 0.4 U (g cell dry weight)–1 h–1.  相似文献   

15.
A study was conducted to elucidate the effect of N form, either NH4 + or NO3 , on growth and solute composition of the salt-tolerant kallar grass [Leptochloa fusca (L.) Kunth] grown under 10 mM or 100 mM NaCl in hydroponics. Shoot biomass was not affected by N form, whereas NH4 + compared to NO3 nutrition caused an almost 4-fold reduction in the root biomass at both salinity levels. Under NH4 + nutrition, salinity had no effect on the biomass yield, whereas under NO3 nutrition, increasing salinity from 10 mM to 100 mM caused 23% and 36% reduction in the root and shoot biomass, respectively. The reduced root growth under NH4 + nutrition was not attributable to impaired shoot to root C allocation since N form did not affect the overall root sugar concentration and the starch concentration was even higher under NH4 + compared to NO3 nutrition. The low NH4 + (2 mM) and generally higher amino-N concentrations in NH4 +- compared to NO3 -fed plants indicated that the grass was able to effectively detoxify NH4 +. Salinity had no effect on Ca2+ and Mg2+ levels, whereas their concentration in shoots was lower under NH4 + compared to NO3 nutrition (over 66% reduction in Ca2+; over 20% reduction in Mg2+), but without showing deficiency symptoms. Ammonium compared to NO3 nutrition did not inhibit K+ uptake, and the K+-Na+ selectivity either remained unaffected or it was higher under NH4 + than under NO3 nutrition. Results suggested that while NH4 + versus NO3 nutrition substantially reduced root growth, and also strongly modified anion concentrations and to a minor extent concentrations of divalent cations in shoots, it did not influence salt tolerance of kallar grass.  相似文献   

16.
Nitrate and nitrite was reduced by Escherichia coli E4 in a l-lactate (5 mM) limited culture in a chemostat operated at dissolved oxygen concentrations corresponding to 90–100% air saturation. Nitrate reductase and nitrite reductase activity was regulated by the growth rate, and oxygen and nitrate concentrations. At a low growth rate (0.11 h–1) nitrate and nitrite reductase activities of 200 nmol · mg–1 protein · min–1 and 250 nmol · mg–1 protein · min–1 were measured, respectively. At a high growth rate (0.55 h–1) both enzyme activities were considerably lower (25 and 12 nmol mg–1 · protein · min–1). The steady state nitrite concentration in the chemostat was controlled by the combined action of the nitrate and nitrite reductase. Both nitrate and nitrite reductase activity were inversely proportional to the growth rate. The nitrite reductase activity decreased faster with growth rate than the nitrate reductase. The chemostat biomass concentration of E. coli E4, with ammonium either solely or combined with nitrate as a source of nitrogen, remained constant throughout all growth rates and was not affected by nitrite concentrations. Contrary to batch, E. coli E4 was able to grow in continuous cultures on nitrate as the sole source of nitrogen. When cultivated with nitrate as the sole source of nitrogen the chemostat biomass concentration is related to the activity of nitrate and nitrite reductase and hence, inversely proportional to growth rate.  相似文献   

17.
The fertilisation of wheat crops with Se is a cost-effective method of enhancing the concentration of organic Se in grain, in order to increase the Se intake of animals and humans. It is important to avoid phytotoxicity due to over-application of Se. Studies of phytotoxicity of Se in wheat grown in Australia, where rainfall and grain yield are usually relatively low, have not been reported previously, and overseas studies have had varied results. This study used trials conducted in the field, glasshouse and laboratory to assess Se phytotoxicity in wheat. In field trials that used rates of up to 120 g ha–1Se as selenate, and in pilot trials that used up to 500 g ha–1 Se soil-applied or up to 330 g ha–1 Se foliar-applied, with soils of low S concentrations (2–5 mg kg–1), no Se toxicity symptoms were observed. In pot trials of four weeks duration, the critical tissue level for Se toxicity was around 325 mg kg–1 DW, a level attained by addition to the growth medium of 2.6 mg kg–1 Se as selenate. Solution concentrations above 10 mg L–1 Se inhibited early root growth of wheat in laboratory studies, with greater inhibition by selenite than selenate. For selenite, Se concentrations around 70 mg L–1 were required to inhibit germination, while for selenate germination % was unaffected by a solution concentration of 150 mg L–1 Se. Leaf S concentration and content of wheat increased three-fold with the addition of 1 mg kg–1 Se as selenate to the growth medium. This effect is probably due to the induction of the S deficiency response of the main sulphate transporter. This study found wheat to be more Se-tolerant than did earlier studies of tobacco, soybeans and rice. We conclude that Se phytotoxicity in wheat will not be observed at the range of Se application rates that would be used to increase grain Se for human consumption (4–200 g ha–1 Se as selenate, which would result in soil and tissue levels well below those seen in the above studies), even when – as is common in Australia – soil S concentration and grain yield are low.  相似文献   

18.
Ma  Zhong  Walk  Thomas C.  Marcus  Andrew  Lynch  Jonathan P. 《Plant and Soil》2001,236(2):221-235
Low phosphorus availability regulates root hair growth in Arabidopsis by (1) increasing root hair length, (2) increasing root hair density, (3) decreasing the distance between the root tip and the point at which root hairs begin to emerge, and (4) increasing the number of epidermal cell files that bear hairs (trichoblasts). The coordinated regulation of these traits by phosphorus availability prompted us to speculate that they are synergistic, that is, that they have greater adaptive value in combination than they do in isolation. In this study, we explored this concept using a geometric model to evaluate the effect of varying root hair length (short, medium, and long), density (0, 24, 48, 72, 96, and 120 root hairs per mm of root length), tip to first root hair distance (0.5, 1, 2, and 4 mm), and number of trichoblast files (8 vs. 12) on phosphorus acquisition efficiency (PAE) in Arabidopsis. SimRoot, a dynamic three-dimensional geometric model of root growth and architecture, was used to simulate the growth of Arabidopsis roots with contrasting root hair parameters at three values of phosphorus diffusion coefficient (D e=1×10–7, 1×10–8, and 1×10–9 cm2 s–1) over time (20, 40, and 60 h). Depzone, a program that dynamically models nutrient diffusion to roots, was employed to estimate PAE and competition among root hairs. As D e decreased from 1×10–7 to 1×10–9 cm2 s–1, roots with longer root hairs and higher root hair densities had greater PAE than those with shorter and less dense root hairs. At D e=1×10–9 cm2 s–1, the PAE of root hairs at any given density was in the order of long hairs > medium length hairs > short hairs, and the maximum PAE occurred at density = 96 hairs mm–1 for both long and medium length hairs. This was due to greater competition among root hairs when they were short and dense. Competition over time decreased differences in PAE due to density, but the effect of length was maintained, as there was less competition among long hairs than short hairs. At high D e(1×10–7 cm2 s–1), competition among root hairs was greatest among long hairs and lowest among short hairs, and competition increased with increasing root hair densities. This led to a decrease in PAE as root hair length and density increased. PAE was also affected by the tip to first root hair distance. At low D e values, decreasing tip to first root hair distance increased PAE of long hairs more than that of short hairs, whereas at high D e values, decreasing tip to first root hair distance increased PAE of root hairs at low density but decreased PAE of long hairs at very high density. Our models confirmed the benefits of increasing root hair density by increasing the number of trichoblast files rather than decreasing the trichoblast length. The combined effects of all four root hair traits on phosphorus acquisition was 371% greater than their additive effects, demonstrating substantial morphological synergy. In conclusion, our data support the hypothesis that the responses of root hairs to low phosphorus availability are synergistic, which may account for their coordinated regulation.  相似文献   

19.
SummarySelf-directing optimization was successfully employed to determine the optimal combination of engineering parameters, viz., pH, aeration rate and agitation rate, for extracellular ribonuclease production by Aspergillus niger SA-13-20 in a batch bioreactor. Maximal RNase production of 5.38 IU ml–1 was obtained at controlled pH of 2.33, aeration rate of 1.67 v/v/m and agitation rate of 850 rev/min. The effect of oxygen on the fermentation was also investigated. With increase in volumetric oxygen transfer coefficients (KLa), cell growth and RNase production first increased and then decreased. RNase production was further increased to 7.10 IU ml–1 and the fermentation time was shortened from 96 to 72 h by controlling dissolved oxygen concentration at 10% saturation by aerating oxygen after about 28 h of fermentation under the above optimal condition. The kinetic model showed that RNase production by A. niger SA-13-20 was growth-associated.  相似文献   

20.
Jasmonates are a new group of plant hormones; their roles on plant development are still little known. The aim of this work is to determine the action of jasmonates on cabbage, Brassica oleracea L. var Capitata, development both in in vitro cultured explants and in whole plants. Jasmonic acid (JA) enhanced nodal explant development when applied at 2–50 nM and inhibited it when supplied at 1250 and 6000 nM JA. Overall plant development was enhanced most under the 10 nM JA treatment; which significantly increased the explant shoot, leaf, and root dry weight. The root system of the explants cultured under the lower JA concentrations appeared more vigorous. Jasmonic acid also promoted the development of isolated in vitro cultured roots when applied at 2 and 10 nM. Root length and weight significantly increased, while concentrations 250 nM JA and over were detrimental. Isolated roots were progressively thicker as the JA concentration increased. Methyl jasmonate promoted both the below- and above-ground cabbage plant development when applied in a confined atmosphere at a concentration of only 1.225 nl.l–1 MJ: plants were higher and heavier, and showed an improved root system development. On the other hand, the 2.43 nl.l–1 MJ treatment decreased plant growth. The present work reveals a role for jasmonates as enhancers of in vitro and in vivo cabbage plant development. To our knowledge, no corresponding studies on the effects of jasmonates on whole plants have been previously published.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号