首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual reproduction in ascomycete fungi is governed by the mating-type (MAT) locus. The MAT loci of Diaporthe and its Phomopsis anamorphs differ in only one gene: MAT1-1-1 in mating-type MAT1-1 and MAT1-2-1 in mating-type MAT1-2. In order to diagnose mating-types in Diaporthe and Phomopsis and evaluate their usefulness in teleomorph induction in vitro and biological species delimitation, we designed primers that amplify part of the MAT1-1-1 and MAT1-2-1 genes. MAT phylogenies were generated and compared with ITS and EF1-α phylograms. Species recognised in the EF1-α phylogeny corresponded directly with those determined in the MAT phylogenies. ITS was shown to be highly variable resulting in a large number of phylogenetic species that were discordant with MAT and EF1-α species. Mating experiments were conducted to evaluate the existence of reproductive barriers between some isolates, and their anamorphic morphologies were compared. The primers proved to be useful in the mating-type diagnosis of isolates, selection of compatible mating pairs, and in the assessment of biological species boundaries.  相似文献   

2.
3.
Nucleotide sequences of the mating-type loci MAT1-1 and MAT1-2 of Cordyceps takaomontana were determined, which is the first such report for the clavicipitaceous fungi. MAT1-1 contains two mating-type genes, MAT1-1-1 and MAT1-1-2, but MAT1-1-3 could not be found. On the other hand, MAT1-2 has MAT1-2-1. A pseudogene of MAT1-1-1 is located next to MAT1-2.  相似文献   

4.
We characterize the mating-type genes in Aspergillus flavus,Aspergillus parasiticus and Petromyces alliaceus. A single MAT1-1 or MAT1-2 gene was detected in the genomes of A. flavus and A. parasiticus, which is consistent with a potential heterothallic organization of MAT genes in these species. In contrast, the only known, functionally homothallic species in Aspergillus section Flavi, P. alliaceus, has tightly linked (<2kb) MAT1-1 and MAT1-2 genes, typical of other self-fertile homothallic euascomycetes. This is the first example of linked MAT genes within a homothallic species of Aspergillus. We tested the null hypothesis of no significant difference in the frequency of MAT1-1 and MAT1-2 in A. flavus and A. parasiticus sampled from a single peanut field in Georgia. For each species, mating-type frequencies were determined for the total population samples and for samples that were clone-corrected based on vegetative compatibility groups (VCGs) and aflatoxin gene cluster haplotypes. There was no significant difference in the frequency of the two mating types for A. flavus and A. parasiticus in either VCG or haplotype clone-corrected samples. The existence of both mating-type genes in equal proportions in A. flavus and A. parasiticus populations, coupled with their expression at the mRNA level and the high amino acid sequence identity of MAT1-1 (77%) and MAT1-2 (83%) with corresponding homologs in P. alliaceus, indicates the potential functionality of these genes and the possible existence of a sexual state in these agriculturally important species.  相似文献   

5.
Zhang S  Zhang YJ  Liu XZ  Wen HA  Wang M  Liu DS 《Fungal biology》2011,115(8):708-714
The entomopathogenic fungus Ophiocordyceps sinensis has been important in traditional Chinese medicine but has yet to be commercially cultivated. One bottleneck is the very low frequency of stromata formation from artificially infected moth larvae. The mating system of fungi is the determining factor for sexual reproduction, but mating-type genes of O. sinensis have not been previously investigated. In this study, the putative mating-type gene MAT1-2-1 within the MAT1-2 idiomorph was amplified by polymerase chain reaction (PCR) and was determined to consist of 859 nucleotides that encode 249 amino acids; genes within the MAT1-1 idiomorph, however, were not determined. The MAT1-2-1 gene contained the conserved high-mobility group (HMG) box, and MAT1-2-1 flanking sequences were subsequently obtained. Although no putative open reading frames of the MAT1-1 idiomorph were detected within the ca. 8-kb flanking sequences of MAT1-2-1, a putative DNA lyase gene (which is present next to both idiomorphs in some heterothallic fungi) was found ca. 3.0 kb downstream of MAT1-2-1. The intervening distance between MAT1-2-1 and the DNA lyase gene in O. sinensis is larger than that in Cordyceps militaris and Cordyceps takaomontana. In addition, O. sinensis showed low sequence similarities with C. militaris and C. takaomontana in both MAT1-2-1 and the DNA lyase gene. In the phylogenetic tree, different MAT1-2-1 haplotypes of O. sinensis clustered together with high bootstrap support. As a single-copy gene, MAT1-2-1 was detected in all examined O. sinensis isolates including tissue cultures and single-ascospore cultures. This report describes, for the first time, a mating-type gene of O. sinensis.  相似文献   

6.
Entomopathogens and other econutritional fungi belonging to Clavicipitaceae were phylogenetically analyzed on the basis of the 18S rRNA gene and mating-type genes (MAT1-1-1 and MAT1-2-1). The phylogenies of the mating-type genes yielded better resolutions than that of 18S rRNA gene. Entomopathogens (Cordyceps bassiana, Cordyceps brongniartii, Cordyceps militaris, Cordyceps sinclairii, Cordyceps takaomontana, Isaria cateniannulata, Isaria farinosa, Isaria fumosorosea, Isaria javanica, Lecanicillium muscarium and Torrubiella flava) were considered as a phylogenetically defined group, and were closely related to mycopathogens (Lecanicillium psalliotae and Verticillium fungicola). They located at more descendant positions in the mating-type trees than other fungi, and lacked the mating-type gene MAT1-1-3. The deletion of MAT1-1-3 was supposed to have occurred once in Clavicipitaceae, and a good indication for the evolution of Clavicipitaceae. Other entomopathogens (Cordyceps cylindrica, Cordyceps subsessilis, Metarhizium anisopliae and Nomuraea rileyi) and pathogens of plants, nematodes and slime molds, were relatively related to each other, and possessed MAT1-1-3, but were supposed to be heterogeneous. Root-associated fungi did not form any clade with other species.  相似文献   

7.
Heterothallism in Cordyceps takaomontana   总被引:4,自引:0,他引:4  
Perithecium formation of an entomopathogenic fungus Cordyceps takaomontana was promoted by treating the mycelia with cell wall-degrading enzymes and PEG 4000. Perithecia were formed in the mixed culture of both mating-type strains MAT1 and MAT2, and not in the culture of MAT1 or MAT2 alone. The MAT1 strains did not possess a mating-type gene MAT1-1-3, but could produce perithecia. These results strongly suggested that C. takaomontana is heterothallic, and does not need MAT1-1-3 for the perithecium formation. MAT1-1-3 was also not found in another entomopathogenic fungus Cordyceps militaris. On the other hand, phytopathogenic fungi Balansia sp., Claviceps purpurea and Epichloë typhina possessed MAT1-1-3. The structures of mating-type locus MAT1-1 of these phytopathogenic fungi in the family Clavicipitaceae were similar to that of a phytopathogenic fungus Gibberella fujikuroi in the family Nectriaceae, which is closely related to Clavicipitaceae. These results suggested that phytopathogen might be more ancestral group than entomopathogen in Clavicipitaceae, and that MAT1-1-3 might be lost in the course of the host shift from plants to insects.  相似文献   

8.
9.
Two mating-type genes, designated MAT1-1-1 and MAT1-2-1, were cloned and sequenced from the presumed asexual ascomycete Cladosporium fulvum (syn. Passalora fulva). The encoded products are highly homologous to mating-type proteins from members of the Mycosphaerellaceae, such as Mycosphaerella graminicola and Cercospora beticola. In addition, the two MAT idiomorphs of C. fulvum showed regions of homology and each contained one additional putative ORF without significant similarity to known sequences. The distribution of the two mating-type genes in a world-wide collection of 86 C. fulvum strains showed a departure from a 1:1 ratio (chi(2)=4.81, df=1). AFLP analysis revealed a high level of genotypic diversity, while strains of the fungus were identified with similar virulence spectra but distinct AFLP patterns and opposite mating-types. These features could suggest the occurrence of recombination in C. fulvum.  相似文献   

10.
Conserved regions of mating-type genes were amplified in four representatives of the genus Xanthoria (X. parietina, X. polycarpa, X. flammea, and X. elegans) using PCR-based methods. The complete MAT locus, containing one ORF (MAT1-2-1) coding for a truncated HMG-box protein, and two partial flanking genes, were cloned by screening a genomic lambda phage library of the homothallic X. parietina. The flanking genes, a homologue of SLA2 of Saccharomyces cerevisiae and a DNA lyase gene, served to amplify the two idiomorphs of the X. polycarpa MAT locus. Each idiomorph contains a single gene: MAT1-2-1 codes for a HMG-box protein, MAT1-1-1 encodes an alpha domain protein. The occurrence of mating-type genes in eight single spore isolates derived from one ascus was studied with a PCR assay. In the homothallic X. parietina a HMG fragment, but no alpha box fragment was found in all isolates, whereas in X. elegans, another homothallic species, all tested isolates contained a fragment of both idiomorphs. Conversely, isolates of the heterothallic X. polycarpa contained either a HMG or an alpha box fragment, but never both.  相似文献   

11.
Tetrad analysis of MATa/MAT alpha diploids of Saccharomyces cerevisiae generally yields 2 MATa:2MAT alpha meiotic products. About 1 to 1.8% of the tetrads yield aberrant segregations for this marker. Described here are experiments that determine whether the aberrant meiotic segregations at the mating-type locus are ascribable to gene conversions or to MAT switches, that is, to mating-type interconversions. Diploid strains incapable of switching MATa to MAT alpha, or the converse, nevertheless display changes of MATa to MAT alpha, or the reverse. These events must be attributed to gene conversion. Further, we suggest that MATa and MAT alpha alleles may represent nonhomologous sequences of DNA since they fail to display postmeiotic segregations.  相似文献   

12.
The mating type locus (MAT1) of Magnaporthe oryzae has similar structural organization to MAT in other ascomycetes and encodes the mating type genes MAT1-1-1 with an alpha-box motif and MAT1-2-1 with an HMG-box motif in the MAT1-1 and MAT1-2 idiomorphs, respectively. Sequence and expression analyses of the MAT1 locus indicated a second open reading frame (ORF), MAT1-1-2, in the MAT1-1 idiomorph, and novel mating-type dependent ORFs (MAT1-1-3 and MAT1-2-2) at the locus. The MAT1-1-3 ORF initiated within the MAT1-1 idiomorph while the MAT1-2-2 ORF initiated at the border of the MAT1-2 idiomorph with both ORFs sharing most of their reading frames in the MAT1 flanking region. This suggests that the encoded proteins (MAT1-1-3 and MAT1-2-2) should be similar in their primary structures but can be distinguished by distinct N-termini with amino acids of 1 and 32, respectively, in each mating type. A CT dinucleotide repeat, (CT)n, present in the upstream region of MAT1-1-3, was polymorphic among the isolates.  相似文献   

13.
Horn BW  Moore GG  Carbone I 《Mycologia》2011,103(1):174-183
Sexual reproduction was examined in the aflatoxin-producing fungus Aspergillus nomius. Crosses between sexually compatible strains resulted in the formation of multiple nonostiolate ascocarps within stromata, which places the teleomorph in genus Petromyces. Ascocarp and ascospore morphology in Petromyces nomius were similar to that in P. flavus and P. parasiticus, and differences between teleomorphs were insufficient for species separation. Formation of mature ascocarps was infrequent, with only 24% of the 83 crosses producing viable ascospores. The majority of P. nomius strains contained a single mating-type gene (MAT1-1 or MAT1-2), but several strains contained both genes. MAT1-1/MAT1-2 strains were self-sterile and capable of mating with both MAT1-1 and MAT1-2 strains; hence P. nomius appears to be functionally heterothallic.  相似文献   

14.
Ascochyta and Phoma are fungal genera containing several important plant pathogenic species. These genera are morphologically similar, and recent molecular studies performed to unravel their phylogeny have resulted in the establishment of several new genera within the newly erected Didymellaceae family. An analysis of the structure of fungal mating-type genes can contribute to a better understanding of the taxonomic relationships of these plant pathogens, and may shed some light on their evolution and on differences in sexual strategy and pathogenicity. We analysed the mating-type loci of phylogenetically closely related Ascochyta and Phoma species (Phoma clematidina, Didymella vitalbina, Didymella clematidis, Peyronellaea pinodes and Peyronellaea pinodella) that co-occur on the same hosts, either on Clematis or Pisum. The results confirm that the mating-type genes provide the information to distinguish between the homothallic Pey. pinodes (formerly Ascochyta pinodes) and the heterothallic Pey. pinodella (formerly Phoma pinodella), and indicate the close phylogenetic relationship between these two species that are part of the disease complex responsible for Ascochyta blight on pea. Furthermore, our analysis of the mating-type genes of the fungal species responsible for causing wilt of Clematis sp. revealed that the heterothallic D. vitalbina (Phoma anamorph) is more closely related to the homothallic D. clematidis (Ascochyta anamorph) than to the heterothallic P. clematidina. Finally, our results indicate that homothallism in D. clematidis resulted from a single crossover between MAT1-1 and MAT1-2 sequences of heterothallic ancestors, whereas a single crossover event followed by an inversion of a fused MAT1/2 locus resulted in homothallism in Pey. pinodes.  相似文献   

15.
In the yeast Saccharomyces cerevisiae, glucoamylase activity appears specifically in sporulating cells heterozygous for the mating-type locus (MAT). We identified a sporulation-specific glucoamylase gene (SGA) and show that expression of SGA is positively regulated by the mating-type genes, both MATa1 and MAT alpha 2. Northern blot analysis revealed that control of SGA is exerted at the level of RNA production. Expression of SGA or the consequent degradation of glycogen to glucose in cells is not required for meiosis or sporulation, since MATa/MAT alpha diploid cells homozygous for an insertion mutation at SGA still formed four viable ascospores.  相似文献   

16.
Aspergillus fumigatus is a medically important opportunistic pathogen and a major cause of respiratory allergy. The species has long been considered an asexual organism. However, genome analysis has revealed the presence of genes associated with sexual reproduction, including a MAT-2 high-mobility group mating-type gene and genes for pheromone production and detection (Galagan et al., personal communication; Nierman et al., personal communication). We now demonstrate that A. fumigatus has other key characteristics of a sexual species. We reveal the existence of isolates containing a complementary MAT-1 alpha box mating-type gene and show that the MAT locus has an idiomorph structure characteristic of heterothallic (obligate sexual outbreeding) fungi. Analysis of 290 worldwide clinical and environmental isolates with a multiplex-PCR assay revealed the presence of MAT1-1 and MAT1-2 genotypes in similar proportions (43% and 57%, respectively). Further population genetic analyses provided evidence of recombination across a global sampling and within North American and European subpopulations. We also show that mating-type, pheromone-precursor, and pheromone-receptor genes are expressed during mycelial growth. These results indicate that A. fumigatus has a recent evolutionary history of sexual recombination and might have the potential for sexual reproduction. The possible presence of a sexual cycle is highly significant for the population biology and disease management of the species.  相似文献   

17.
Haber JE  George JP 《Genetics》1979,93(1):13-35
Studies of heterothallic and homothallic strains of Saccharomyces cerevisiae have led to the suggestion that mating-type information is located at three distinct sites on chromosome 3, although only information at the mating-type (MAT) locus is expressed (Hicks, Strathern and Herskowitz, 1977). We have found that the recessive mutation cmt permits expression of the normally silent copies of mating-type information at the HMa and HM alpha loci. In haploid strains carrying HMa and HM alpha, the cmt mutation allows the simultaneous expression of both a and alpha information, leading to a nonmating ("MATa/MAT alpha") phenotype. The effects of cmt can be masked by changing the mating-type information at HMa or HM alpha. For example, a cell of genotype MATa hma HM alpha cmt has an a mating type, while a MAT alpha hma HM alpha cmt strain is nonmating. Expression of mating-type information at the HM loci can correct the mating and sporulation defects of the mata* and mat alpha 10 alleles. Meiotic segregants recovered from cmt/cmt diploids carrying the mat mutations demonstrate that these mutants are not "healed" to normal MAT alleles, as is the case in parallel studies using the homothallism gene HO.--All of the results are consistent with the notion that the HMa and hm alpha alleles both code for alpha information, while HM alpha and hma both code for a information. The cmt mutation demonstrates that these normally silent copies of mating-type and sporulation information can be expressed and that the information at these loci is functionally equivalent to that found at MAT. The cmt mutation does not cause interconversions of mating-type alleles at MAT, and it is not genetically linked to MAT, HMa, HM alpha or HO. In cmt heterozygotes, cmt becomes homozygous at a frequency greater than 1% when the genotype at the MAT locus is mata*/MAT alpha or mat alpha 10/MATa.  相似文献   

18.
19.
In nature, the chestnut blight fungus, Cryphonectria parasitica, has a mixed mating system; i.e., individuals in the same population have the ability to self and outcross. In the laboratory, C. parasitica appears to have a bipolar self-incompatibility system, typical of heterothallic ascomycetes; selfing is rare, although demonstrable. In this report we describe the cloning and sequencing of both mating-type idiomorphs and their flanking regions at the MAT locus in C. parasitica. The two idiomorphs, MAT1-1 and MAT1-2, are structurally similar to those of other pyrenomycetes described to date. MAT1-1 encodes three genes (MAT1-1-1, MAT1-1-2, and MAT1-1-3) and MAT1-2 encodes a single gene (MAT1-2-1). Unlike MAT idiomorphs in some ascomycetes, the sequences at both ends of the idiomorphs in C. parasitica show a relatively gradual, rather than abrupt, transition from identity in the flanking regions to almost complete dissimilarity in the coding regions. The flanking regions have repetitive polypyrimidine (T/C) and polypurine (A/G) tracts; the significance of these repetitive tracts is unknown. Although we found repetitive tracts in the flanks and gradual transition zones at the ends of the idiomorphs, we found no special features that would explain how selfing occurs in an otherwise self-incompatible fungus.  相似文献   

20.
《Fungal biology》2021,125(10):834-843
Sporothrix schenckii and allied species are thermodimorphic fungi widely distributed in nature which causes human and animal sporotrichosis, the most common subcutaneous mycosis globally. Sporotrichosis is acquired after a traumatic inoculation of soil or plant material contaminated with Sporothrix propagules or through bites and scratches from diseased cats. In Ascomycota, the master regulators of sex are MAT genes that lie in a single mating-type locus, in Sporothrix these are determined by two nonhomologous alleles, MAT1-1 and MAT1-2. We assessed the whole-genome sequences of medically relevant Sporothrix to develop a single-tube duplex PCR assay to screen S. brasiliensis, S. schenckii, S. globosa, and S. luriei idiomorphs (MAT1-1 or MAT1-2) and understand the distribution and incidence of mating-type strains from natural populations. Using our duplex PCR assay, a 673 bp amplicon (α-box protein) was consistently amplified from all MAT1-1 isolates, while a 291 bp fragment was only amplified from the isolates harboring MAT1-2 (HMG box). Molecular evidence suggests heterothallism (self-sterility) as the unique mating strategy among the species evaluated. The mating-type identity of 93 isolates revealed a nearly equal distribution (1:1 ratio) of mating type alleles within species but deviating between different outbreak areas. Remarkably, for S. brasiliensis in Rio de Janeiro, we report an overwhelming occurrence of MAT1-2 (1:13 ratio; χ2 = 10.286, P = 0.0013) opposing the high prevalence MAT1-1 in the Rio Grande do Sul (10:1 ratio; χ2 = 7.364, P = 0.0067). Therefore, the population structure of Sporothrix species refers from paucity to regular cycles of sexual recombination in most of the studied regions. Our PCR-based mating-type diagnostic assay is proposed here as an important marker to track the geographical expansion during the long-lasting outbreak of cat-transmitted sporotrichosis driven by S. brasiliensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号