首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of oxidative metabolism in resistance to macrocyclic lactones in Haemonchus contortus was examined by measuring activities toward 2 model cytochrome P450 substrates, aldrin and ethoxycoumarin, in a susceptible and a resistant isolate of the parasite. Microsomal preparations from larvae and adults of the 2 isolates showed no differences in levels of NADPH- or cumene hydroperoxide-supported aldrin epoxidase or ethoxycoumarin O-deethylase activities. Intact adult nematodes showed an ability to catalyze the epoxidation of significant amounts of aldrin, although the nature of the enzyme group responsible was unknown. This epoxidase activity was greater in adults of the susceptible isolate. It is apparent that oxidase activities toward the 2 substrates are not enhanced in the resistant isolate, suggesting that the observed resistance to macrocyclic lactones may not involve enhanced oxidative metabolism.  相似文献   

2.
The pre- and postnatal development of monooxygenases in the liver and adrenal gland of marmoset monkeys (Callithrix jacchus) was investigated. Cytochrome P450 was detected in the fetal adrenal gland, but aldrin epoxidase, ethoxycoumarin O-deethylase, and ethoxyresorufin O-deethylase activities were below detection limits. Although fetal hepatic cytochrome P450 was not detected, low activities of aldrin epoxidase and ethoxycoumarin O-deethylase, but no ethoxyresorufin O-deethylase, could be detected in fetal liver. These enzymes attained adult marmosets activities when the offspring were approximately 2 months of age.  相似文献   

3.
The organic hydroperoxide cumene hydroperoxide is capable of oxidizing ethanol to acetaldehyde in the presence of either catalase, purified cytochrome P-450 or rat liver microsomes. Other hemoproteins like horseradish peroxidase, cytochrome c or hemoglobin were ineffective. In addition to ethanol, higher alcohols like 1-propanol, 1-butanol and 1-pentanol are also oxidized to their corresponding aldehydes to a lesser extent. Other organic hydroxyperoxides will replace cumene hydroperoxide in oxidizing ethanol but less effectively. The cumene-hydroperoxide-dependent ethanol oxidation in microsomes was inhibited partially by cytochrome P-450 inhibitors but was unaffected by catalase inhibitors. Phenobarbital pretreatment of rats increased the specific activity of the cumene-hydroperoxide-dependent ethanol oxidation per mg of microsomes about seven-fold. The evidence suggests that cytochrome P-450 rather than catalase is the enzyme responsible for hydroperoxide-dependent ethanol oxidation. However, when H2O2 is used in place of cumene hydroperoxide, the microsomal ethanol oxidation closely resembles the catalase system.  相似文献   

4.
Catalytic activities of cytochrome P450 2B4 lacking NH2-terminal amino acids 2-27 (wt Delta2B4) and that of truncated 2B4 containing a Pro to Ser mutation at position 221 were examined in a system supported by cumene hydroperoxide. Demethylation activities of either truncated 2B4 with N-methylaniline, N,N-dimethylaniline, and d-benzphetamine were lower than those of liver microsomal 2B4, whereas the rate of 1-phenylethanol oxidation to acetophenone catalyzed by liver microsomal and truncated 2B4 enzymes was nearly the same. The Km and Vmax values for cumene hydroperoxide in the demethylation of N-methylaniline by wt Delta2B4 were 20% and 28%, respectively, of those obtained for 2B4. The reaction with wt Delta2B4 displayed a lesser dependence on phospholipid than did that with 2B4, and a complex relationship between activity and substrate concentration. The results suggest that the NH2-terminal region contributes to interaction of oxidant, substrate, and phospholipid in cumene hydroperoxide-supported reactions catalyzed by cytochrome P450 2B4.  相似文献   

5.
An electron transport system that catalyzes the oxidation of NADPH by organic, hydroperoxides has been discovered in microsomal fractions. A tissue distribution study revealed that the microsomal fraction of rat liver was particularly effective in catalyzing the NADPH-peroxidase reaction whereas microsomes from adrenal cortex, lung, kidney, and testis were weakly active. The properties of the hepatic microsomal NADPH-peroxidase enzyme system were next examined in detail.The rate of NADPH oxidation by hydroperoxides was first-order with respect to microsomal protein concentration and a Km value for NADPH of less than 3 μm was obtained. Examination of the hydroperoxide specificity revealed that cumene hydroperoxide and various steroid hydroperoxides were effective substrates for the enzyme system. Using cumene hydroperoxide as substrate, the reaction rate showed saturation kinetics with increasing concentrations of hydroperoxide and an apparent Km of about 0.4 mm was obtained. The NADPH-peroxidase reaction was inhibited by potassium cyanide, half-maximal inhibition occurring at a cyanide concentration of 2.2 mm. NADH was able to support the NADPH-dependent peroxidase activity synergistically.Evidence compiled for the involvement of NADPH-cytochrome c reductase (NADPH-cytochrome c oxidoreductase, EC 1.6.2.3) in the NADPH-peroxidase reaction included: (1) an identical pH optimum for both activities; (2) stimulation of NADPH-peroxidase activity by increasing ionic strength; (3) inhibition by 0.05 mm, p-hydroxymercuribenzoate with partial protection by NADPH; (4) inhibition by NADP+; and (5) inactivation by antiserum to NADPH-cytochrome c reductase. In contrast, antibody to cytochrome b5 did not inhibit the NADPH-peroxidase activity. Evidence for the participation of cytochrome P-450 in the NADPH-peroxidase reaction included inhibition by compounds forming type I, type II, and modified type II difference spectra with cytochrome P-450; inhibition by reagents converting cytochrome P-450 to cytochrome P-420; and marked stimulation by in vivo phenobarbital administration. The NADPH-reduced form of cytochrome P-450 was oxidized very rapidly by cumene hydroperoxide under a CO atmosphere.It was concluded that the NADPH-peroxidase enzyme system of liver microsomes is composed of the same electron transport components which function in substrate hydroxylation reactions.  相似文献   

6.
W R Bidlack  P Hochstein 《Life sciences》1974,14(10):2003-2010
The oxidation of either NADH or NADPH by cumene hydroperoxide in rat liver microsomes is described. The Km′ for the hydroperoxide varied with the pyridine nucleotide utilized (NADPH, Km′ = 0.91 mM; NADH, Km′ = 3.3 mM). Carbon monoxide did not inhibit the peroxidase activity although a variety of other agents which interact with cytochrome P450 did produce inhibitory effects. Moreover, aminotriazole, which stimulated NADPH peroxidase activity, had an inhibitory action on NADPH peroxidase. These various experiments suggest that NADH- and NADPH-dependent peroxidase activity may be mediated by separate components of the microsomal electron transport chain, which may be distinct from but closely interacting with cytochrome P450.  相似文献   

7.
The activities of the drug-metabolizing enzymes, aniline 4-hydroxylase, benzphetamine N-demethylase and 7-ethoxycoumarin O-deethylase have been measured in vitro in kidneys and duodenum of camels (Camelus dromedarius), guinea pigs (Cavia porcellus) and rats (Rattus norvegicus). In these species, levels of hepatic microsomal parameters namely microsomal protein, cytochrome P(450), cytochrome b(5) and NADPH-cytochrome c reductase have also been determined. In general, camels seemed to have the lowest enzyme activity when compared to rats and guinea pigs. Rats showed the highest activity in NADPH-cytochrome c reductase, aniline 4-hydroxylase and ethoxycoumarin O-deethylase among these species. However, guinea pigs showed the highest enzyme activity in cytochrome P(450), cytochrome b(5) and benzphetamine N-demethylase.  相似文献   

8.
Human cytochrome P450 1B1 (CYP1B1) catalyzes the hydroxylation of 17beta-estradiol (E(2)) at C-4, with a lesser activity at C-2. The E(2) 4-hydroxylase activity of human CYP1B1 was first observed in studies of MCF-7 breast cancer cells. Sequencing of polymerase chain reaction products revealed that CYP1B1 expressed in MCF-7 cells was not the previously characterized enzyme but a polymorphic form with leucine substituted for valine at position 432 and serine substituted for asparagine at position 453. To investigate the NADPH- and organic hydroperoxide-supported E(2) hydroxylase activities of the 432L, 453S form of human CYP1B1, the MCF-7 CYP1B1 cDNA was cloned and the enzyme was expressed in Sf9 insect cells. In microsomal assays supplemented with human NADPH:cytochrome P450 oxidoreductase, the expressed 432L, 453S form catalyzed NADPH-supported E(2) hydroxylation with a similar preference for 4-hydroxylation as the 432V, 453N form, with maximal rates of 1.97 and 0.37 nmol (min)(-1)(nmol cytochrome P450)(-1) for 4- and 2-hydroxylation, respectively. Cumeme hydroperoxide efficiently supported E(2) hydroxylation by both the 432V, 453N and 432L, 453S forms at several-fold higher rates than the NADPH-supported activities and with a lesser preference for E(2) 4- versus 2-hydroxylation (2:1). The hydroperoxide-supported activities of both forms were potently inhibited by the CYP1B1 inhibitor, 3,3',4, 4',5,5'-hexachlorobiphenyl. These results indicate that the 432V, 453N and 432L, 453S forms of CYP1B1 have similar catalytic properties for E(2) hydroxylation, and that human CYP1B1 is very efficient in catalyzing the hydroperoxide-dependent formation of catecholestrogens.  相似文献   

9.
The mechanism of steroid hydroxylation in rat liver microsomes has been investigated by employing NaIO4, NaClO2, and various organic hydroperoxides as hydroxylating agents and comparing the reaction rates and steroid products formed with those of the NADPH-dependent reaction. Androstenedione, testosterone, progesterone, and 17beta-estradiol were found to act as good substrates. NaIO4 was by far the most effective hydroxylating agent followed by cumene hydroperoxide, NADPH, NaClO2, pregnenolone 17alpha-hydroperoxide, tert-butyl hydroperoxide, and linoleic acid hydroperoxide. Androstenedione was chosen as the model substrate for inducer and inhibitor studies. The steroid was converted to its respective 6beta-, 7alpha, 15-, and 16alpha-hydroxy derivatives when incubated with microsomal fractions fortified with hydroxylating agent. Evidence for cytochrome P-450 involvement in androstenedione hydroxylation included a marked inhibition by substrates and modifiers of cytochrome P-450 and by reagents which convert cytochrome P-450 to cytochrome P-420. The ratios of the steroid products varied according to the type of hydroxylating agent used and were also modified by in vivo phenobarbital pretreatment. It was suggested that multiple forms of cytochrome P-450 exhibiting different affinities for hydroxylating agent are responsible for these different ratios. Horse-radish peroxidase, catalase, and metmyoglobin could not catalyze androstenedione hydroxylation. Addition of NaIO4, NaClO2, cumene hydroperoxide and other organic hydroperoxides to microsomal suspensions resulted in the appearance of a transient spectral change in the difference spectrum characterized by a peak at about 440 nm and a trough at 420 nm. The efficiency of these oxidizing agents in promoting steroid hydroxylation in microsomes appeared to be related to their effectiveness in eliciting the spectral complex. Electron donors, substrates, and modifiers of cytochrome P-450 greatly diminished the magnitude of the spectral change. It is proposed that NaIO4, NaClO2, and organic hydroperoxides promote steroid hydroxylation by forming a transient ferryl ion (compound I) of cytochrome P-450 which may be the common intermediate hydroxylating species involved in hydroxylations catalyzed by cytochrome P-450.  相似文献   

10.
棉铃虫不同发育阶段微粒体P450酶系组成和活性的比较   总被引:1,自引:1,他引:1  
邱星辉  李薇  冷欣夫 《昆虫学报》2001,44(2):142-147
比较了棉铃虫Helicoverpa armigera 6龄幼虫、蛹、成虫微粒体P450单加氧酶系组成及其活性。P450含量在6龄幼虫中肠>(脂肪体=蛹)>成虫,NADPH-细胞色素还原酶在幼虫中肠>幼虫脂肪体>蛹>成虫;6龄幼虫脂肪体微粒体与蛹脂肪体微粒体P450含量相近,但NADPH-细胞色素还原酶活性前者是后者的4.2倍;成虫微粒体的细胞色素P450和NADPH细胞色素P450还原酶含量很低,几乎未检测出。用对-硝基苯甲醚和艾氏剂为底物测定P450酶系活性表明,与6龄幼虫相比,蛹和成虫具有极低的单加氧酶活性,其O-脱甲基酶活性未检出,艾氏剂环氧化酶活性比幼虫低2~3个数量级。  相似文献   

11.
The primary objective of this study was to determine specific cytochrome P450 isozyme(s) involved in the metabolism of aldrin to its toxic metabolite dieldrin in flathead mullet (Mugil cephalus) liver microsomes. To identify the cytochrome P450 isozyme responsible for the aldrin metabolism in mullet liver, the effects of mammalian‐specific cytochrome P450 inhibitors and substrates were determined in the epoxidation reaction of aldrin. CYP3A‐related inhibitors, ketoconazole, SKF‐525A, and cimetidine, inhibited the metabolism of aldrin. The contribution of CYP1A to the aldrin metabolism was shown by the inhibition of 7‐ethoxyresorufin‐O‐deethylase activity in the presence of aldrin. The results indicate that CY1A and CYP3A are the cytochrome P450s involved in aldrin epoxidase activity in mullet. In addition, the suitability of aldrin epoxidase activity for monitoring of environmental pollution was also assessed in the fish samples caught from four different locations of the West Black Sea coast of Turkey.  相似文献   

12.
The addition of the organic hydroperoxide, cumene hydroperoxide, to liver microsomes results in the appearance of a transient spectral change associated with cytochrome P-450. In addition, unique electron paramagnetic resonance signals are observed with liver microsomal cytochrome P-450 comparable to signals obtained when peroxides interact with metmyoglobin. It is suggested that higher valence states of cytochrome P-450 may function during the activation of oxygen for the hydroxylation of a variety of xenobiotics.  相似文献   

13.
NADPH-supported lipid peroxidation monitored by malondialdehyde (MDA) production in the presence of ferric pyrophosphate in liver microsomes was inactivated by heat treatment or by trypsin and the activity was not restored by the addition of purified NADPH-cytochrome P450 reductase (FPT). The activity was differentially solubilized by sodium cholate from microsomes, and the fraction solubilized between 0.4 and 1.2% sodium cholate was applied to a Sephadex G-150 column and subfractionated into three pools, A, B, and C. MDA production was reconstituted by the addition of microsomal lipids and FPT to specific fractions from the column, in the presence of ferric pyrophosphate and NADPH. Pool B, after removal of endogenous FPT, was highly active in catalyzing MDA production and the disappearance of arachidonate and docosahexaenoate, and this activity was abolished by heat treatment and trypsin digestion, but not by carbon monoxide. The rate of NADPH-supported lipid peroxidation in the reconstituted system containing fractions pooled from Sephadex G-150 columns was not related to the content of cytochrome P450. p-Bromophenylacylbromide, a phospholipase A2 inhibitor, inhibited NADPH-supported lipid peroxidation in both liver microsomes and the reconstituted system, but did not block the peroxidation of microsomal lipid promoted by iron-ascorbate or ABAP systems. Another phospholipase A2 inhibitor, mepacrine, poorly inhibited both microsomal and pool-B'-promoted lipid peroxidation, but did block both iron-ascorbate-driven and ABAP-promoted lipid peroxidation. The phospholipase A2 inhibitor chlorpromazine, which can serve as a free radical quencher, blocked lipid peroxidation in all systems. The data presented are consistent with the existence of a heat-labile protein-containing factor in liver microsomes which promotes lipid peroxidation and is not FPT, cytochrome P450, or phospholipase A2.  相似文献   

14.
The O-dealkylating activities of 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) have been fluorimetrically detected in microsomes prepared from manganese-induced Jerusalem artichoke tubers. Cytochrome P-450 dependence of the reactions was demonstrated by light-reversed CO inhibition, NADPH-dependence, NADH-NADPH synergism and by use of specific inhibitors: antibodies to NADPH-cytochrome P-450 reductase, mechanism-based inactivators and tetcyclasis. Apparent Km values of 161 microM for 7-ethoxycoumarin and 0.4 microM for 7-ethoxyresorufin were determined. O-De-ethylase activity was also detected in microsomes prepared from several other plant species, including wheat, maize, tulip, avocado and Vicia. ECOD and EROD were low or undetectable in uninduced plant tissues, and both activities were stimulated by wounding or by chemical inducers. Two distinct cytochrome P-450 isoforms are involved in ECOD and EROD activities since (1) they showed different distributions among plant species; (2) they showed contrasting inhibition and induction patterns; and (3) ECOD but not EROD activity was supported by cumene hydroperoxide.  相似文献   

15.
Cytochrome P-450 destruction kinetics by cumene hydroperoxide (CHP) has been studied at 25 degrees C in phosphate buffer, pH 7.25-7.50, in various systems: intact and induced rat or rabbit microsomes, highly purified LM2- and LM2- and LM4-forms of cytochrome P-450 from rabbit liver microsomes. The destruction kinetics is characterized by three phases in all systems. The CHP-influenced cytochrome P-450 destruction is a radical chain process with linear termination of the chains. The acidic phospholipids, phosphatidylserine and phosphatidylinositol and total microsomal phospholipids containing the acidic lipid components activate cytochrome P-450 in the hydroxylation of aniline and naphthalene by CHP. Phosphatidylcholine and sphingomyelin have no effect upon the cytochrome P-450 activity in the type I and II substrates oxidation by CHP. The phase transitions of the microsomal phospholipids influence the interaction of cytochrome P-450 with its reductase, altering the activation energy of type I substrates oxidation. The type II substrate oxidation is not affected by phase transitions in the full microsomal hydroxylating system.  相似文献   

16.
o-Phenylphenol was converted to 2,5-dihydroxy biphenyl (phenylhydroquinone) by microsomal P-450. Depending on the cofactor used, microsomal enzymes catalyzed oxidation and/or reduction of phenylhydroquinone. Phenylhydroquinone was oxidized to phenyl 2,5'-p-quinone by cumene hydroperoxide-supported microsomal P-450. Phenyl 2,5'-p-quinone was reduced to phenylhydroquinone by cytochrome P-450 reductase. This study provides direct evidence of cytochrome P-450 catalyzed redox cycling of o-phenylphenol. It is postulated that redox cycling of o-phenylphenol may play a role in o-phenylphenol-caused bladder cancer.  相似文献   

17.
In rat liver submitochondrial particles both NADH and NADPH inhibit lipid peroxidation induced by cumene hydroperoxide. Concomitantly with the inhibition of lipid peroxidation, NADH and NADPH strongly stimulate the peroxidase activity of rat liver submitochondrial particles. Rotenone slightly prevents both the protective effect on malondialdehyde formation and peroxidase activity. The peroxidase activity of rat liver submitochondrial particles was attributed to the NAD(P)H-mediated reduction of mitochondrial cytochrome P-450 which can act upon hydroperoxides, by decomposing them to alcohols.  相似文献   

18.
Male Sprague-Dawley rats fed ethanol (EtOH) 36% of total calories for four weeks in a liquid diet containing either 34% (HF) or 12% (LF) of calories as fat were studied with respect to induction of microsomal monooxygenases (MFO) and substrate competition with EtOH-inducible aniline hydroxylase. The specific activity and turnover of aniline hydroxylase were induced to similar extents by HF-EtOH and LF-EtOH diets. Whereas, both LF-EtOH and HF-EtOH caused a decrease in the turnover of arylhydrocarbon (benzo[a]pyrene) hydroxylase (AHH) and aldrin epoxidase compared to pair-fed (PF) controls, LF-EtOH but not HF-EtOH increased the turnover of ethoxycoumarin and ethoxyresorufin O-deethylase (ECOD and EROD). The increase in ECOD and EROD and the decrease in AHH by EtOH is contrary to the parallel induction of these activities by J-methylcholanthrene (3-MC) and Aroclor 1254 (Aroclor). Benzo(a)pyrene (BaP) stimulated aniline hydroxylase in the HF-EtOH and PF systems, whereas with LF diet, stimulation was seen only in the EtOH group. Ethoxycoumarin (EC) inhibited aniline hydroxylase by microsomes from EtOH- and pyrazole-treated rats, whereas it stimulated aniline hydroxylase by control microsomes, suggesting that the EC effects were associated with EtOH-inducible cytochrome P-450. Ethoxyresorufin (ER) inhibited aniline hydroxylase in EtOH and PF groups, thus the differential effects of EC were not nonspecific O-deethylase effects. The effects of EtOH feeding on ECOD, EROD, and AHH (ie, substrates for 3-MC-inducible cytochrome P-450) displayed a greater differential between the experimental and control group with the LF- than with the HF-containing diet. The findings suggest that the alteration of certain MFO activities by chronic EtOH ingestion can be modified by the content of dietary fat. Moreover, the competition dynamics of MFO substrates toward EtOH-inducible aniline hydroxylase are altered by EtOH feeding and, in turn, modified by dietary fat.  相似文献   

19.
The cytochrome P-450-dependent 20-monooxygenation of ecdysone is catalyzed both by mitochondria and microsomes isolated from Musca domestica (L.) larvae; however, about 50% of the activity is associated with mitochondria, and 37% is associated with microsomes. Pretreatment of larvae with ecdysone results in an increase in Vmax and a decrease in Km values in mitochondria but not in microsomes. Phenobarbital, a known cytochrome P-450 inducer, increases the cytochrome P-450 levels in microsomes without affecting the 20-monooxygenase activity, but both the cytochrome P-450 levels and monooxygenase activity are depressed in mitochondria from phenobarbital-pretreated larvae. The ecdysone 20-monooxygenase activity is equally distributed between mitochondria and microsomes in adult insects. Pretreatment of the insects with ecdysone does not significantly modify the 20-monooxygenase activity of either mitochondrial or microsomal fractions, but the cytochrome P-450 levels are reduced in mitochondria. Phenobarbital also depresses the mitochondrial cytochrome P-450 levels while markedly increasing the microsomal cytochrome P-450 levels. However, no significant changes in ecdysone 20-monooxygenase activity are produced by phenobarbital pretreatment. The effects of ecdysone on adult cytochrome P-450 are mostly evidenced in mitochondria isolated from females, whereas in males the changes are not statistically significant. It is concluded that the mitochondrial ecdysone 20-monooxygenase is under regulatory control by ecdysone in the larval stage, which suggests that only the mitochondrial activity has a physiological role during insect development in M. domestica. In adults, both the mitochondrial and microsomal ecdysone 20-monooxygenase activities are not responsive to ecdysone, which, coupled to their high Km values, indicates that the reaction may not be of physiological importance in adult insects and that the mitochondrial cytochrome P-450 species being depressed by ecdysone in females are possibly not involved in ecdysone metabolism.  相似文献   

20.
The liver microsomal enzyme system that catalyzes the oxidation of NADPH by organic hydroperoxides has been solubilized and resolved by the use of detergents into fractions containing NADPH-cytochrome c reductase, cytochrome P-450 (or P-448), and microsomal lipid. Partially purified cytochromes P-450 and P-448, free of the reductase and of cytochrome b5, were prepared from liver microsomes of rats pretreated with phenobarbital (PB) and 3-methylcholanthrene (3-MC), respectively, and reconstituted separately with the reductase and lipid fractions prepared from PB-treated animals to yield enzymically active preparations functional in cumene hydroperoxide-dependent NADPH oxidation. The reductase, cytochrome P-450 (or P-448), and lipid fractions were all required for maximal catalytic activity. Detergent-purified cytochrome b5 when added to the complete system did not enhance the reaction rate. However, the partially purified cytochrome P-450 (or P-448) preparation was by itself capable of supporting the NADPH-peroxidase reaction but at a lower rate (25% of the maximal velocity) than the complete system. Other heme compounds such as hematin, methemoglobin, metmyoglobin, and ferricytochrome c could also act as comparable catalysts for the peroxidation of NADPH by cumene hydroperoxide and in these reactions, NADH was able to substitute for NADPH. The microsomal NADH-dependent peroxidase activity was also reconstituted from solubilized components of liver microsomes and was found to require NADH-cytochrome b5 reductase, cytochrome P-450 (or P-448), lipid, and cytochrome b5 for maximal catalytic activity. These results lend support to our earlier hypothesis that two distinct electron transport pathways operate in NADPH- and NADH-dependent hydroperoxide decomposition in liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号