首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the chlorobenzene degrader Pseudomonas putida GJ31, chlorocatechol is formed as an intermediate and cleaved by a meta-cleavage extradiol chlorocatechol dioxygenase, which has previously been shown to be exceptionally resistant to inactivation by substituted catechols. The gene encoding this dioxygenase ( cbzE) is preceded by a gene ( cbzT) potentially encoding a ferredoxin, the function of which was studied. The cbzT gene product was overproduced in Escherichia coli and purified in recombinant form. Two homologous proteins, CdoT and AtdS, encoded by genes identified in strains degrading nitrobenzene and aniline, respectively, were also purified and characterized. All three proteins showed spectroscopic properties typical for [2Fe-2S] ferredoxins. The chlorocatechol dioxygenase from strain GJ31 (CbzE) was fully inactivated when 4-methylcatechol was used as substrate. Inactivated CbzE could be rapidly reactivated in vitro in the presence of purified CbzT and a source of reductant. It is inferred that the ability of strain GJ31 to metabolize both chlorobenzene and toluene might depend on the regeneration of the chlorocatechol dioxygenase activity mediated by CbzT. Three CbzT-like ferredoxins, including AtdS, were found to be competent in the reactivation of CbzE, whereas XylT, a protein known to mediate reactivation of the catechol dioxygenase from P. putida mt2 (XylE), was ineffective. Accordingly, CbzT formed a covalent complex with CbzE when cross-linked with a carbodiimide, whereas XylT did not. In the reverse situation, CbzT was found to reactivate XylE as efficiently as XylT and formed an heterologous covalent complex with this enzyme upon cross-linking. We conclude that CbzT, CdoT and AtdS are isofunctional ferredoxins that appear to be involved in the reactivation of their cognate catechol dioxygenases. Based on primary structure comparisons, residues of the ferredoxins possibly involved in the molecular interaction with catechol dioxygenases were identified and their significance is discussed.  相似文献   

2.
Pseudomonas putida F1 contains a multicomponent enzyme system, toluene dioxygenase, that converts toluene and a variety of substituted benzenes to cis-dihydrodiols by the addition of one molecule of molecular oxygen. Toluene-grown cells of P. putida F1 also catalyze the monohydroxylation of phenols to the corresponding catechols by an unknown mechanism. Respirometric studies with washed cells revealed similar enzyme induction patterns in cells grown on toluene or phenol. Induction of toluene dioxygenase and subsequent enzymes for catechol oxidation allowed growth on phenol. Tests with specific mutants of P. putida F1 indicated that the ability to hydroxylate phenols was only expressed in cells that contained an active toluene dioxygenase enzyme system. 18O2 experiments indicated that the overall reaction involved the incorporation of only one atom of oxygen in the catechol, which suggests either a monooxygenase mechanism or a dioxygenase reaction with subsequent specific elimination of water.  相似文献   

3.
The nucleotide sequence of a 10,528-bp region comprising the chlorocatechol pathway gene cluster tetRtetCDEF of the 1,2,3,4-tetrachlorobenzene via the tetrachlorocatechol-mineralizing bacterium Pseudomonas chlororaphis RW71 (T. Potrawfke, K. N. Timmis, and R.-M. Wittich, Appl. Environ. Microbiol. 64:3798-3806, 1998) was analyzed. The chlorocatechol 1,2-dioxygenase gene tetC was cloned and overexpressed in Escherichia coli. The recombinant gene product was purified, and the alpha,alpha-homodimeric TetC was characterized. Electron paramagnetic resonance measurements confirmed the presence of a high-spin-state Fe(III) atom per monomer in the holoprotein. The productive transformation by purified TetC of chlorocatechols bearing chlorine atoms in positions 4 and 5 provided strong evidence for a significantly broadened substrate spectrum of this dioxygenase compared with other chlorocatechol dioxygenases. The conversion of 4,5-dichloro- or tetrachlorocatechol, in the presence of catechol, displayed strong competitive inhibition of catechol turnover. 3-Chlorocatechol, however, was simultaneously transformed, with a rate similar to that of the 4,5-halogenated catechols, indicating similar specificity constants. These novel characteristics of TetC thus differ significantly from results obtained from hitherto analyzed catechol 1,2-dioxygenases and chlorocatechol 1,2-dioxygenases.  相似文献   

4.
Previously we purified an enzyme from Phenylobacterium immobilis DSM 1986, which cleaves the catechol derivative of the herbicide Chloridazon [5-amino-4-chloro-2-phenyl-3 (2H)-pyridazinone] in the meta position. The enzyme, which could be crystallized, proved in Ouchterlony double-diffusion tests to consist of a single protein species. No cross-reaction was observed with other meta-cleaving enzymes. Its light absorption spectrum showed a maximum at 279 nm (epsilon = 310 mM -1 cm -1), shoulders at 289 nm and 275 nm and a very weak band at around 430 nm (epsilon = 1.14 mM -1 cm -1). The amino acid analysis showed a slight excess of acidic amino acids, in agreement with the pl of 4.5. Surprisingly the enzyme per se is completely inactive, although it contains one non-dialysable iron atom per submit. It has to be activated by preincubation with ferrous ions or ascorbate. The enzyme activated this way is autoxidizable and returns to its non-activated state in the presence of oxygen. During the reaction with the substrate, this inactivation seems to be enhanced about 100 times. Since this kind of activation and inactivation is not observed in other meta-cleaving enzymes, this enzyme seems to represent a new type of a non-heme iron dioxygenase. We tentatively propose the name Chloridazon-catechol dioxygenase for this enzyme.  相似文献   

5.
A purification procedure for a new kind of extradiol dioxygenase, termed chlorocatechol 2,3-dioxygenase, that converts 3-chlorocatechol productively was developed. Structural and kinetic properties of the enzyme, which is part of the degradative pathway used for growth of Pseudomonas putida GJ31 with chlorobenzene, were investigated. The enzyme has a subunit molecular mass of 33.4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Estimation of the native Mr value under nondenaturating conditions by gel filtration gave a molecular mass of 135 ± 10 kDa, indicating a homotetrameric enzyme structure (4 × 33.4 kDa). The pI of the enzyme was estimated to be 7.1 ± 0.1. The N-terminal amino acid sequence (43 residues) of the enzyme was determined and exhibits 70 to 42% identity with other extradiol dioxygenases. Fe(II) seems to be a cofactor of the enzyme, as it is for other catechol 2,3-dioxygenases. In contrast to other extradiol dioxygenases, the enzyme exhibited great sensitivity to temperatures above 40°C. The reactivity of this enzyme toward various substituted catechols, especially 3-chlorocatechol, was different from that observed for other catechol 2,3-dioxygenases. Stoichiometric displacement of chloride occurred from 3-chlorocatechol, leading to the production of 2-hydroxymuconate.  相似文献   

6.
Two catechol 1,2-dioxygenase (C1,2O) isozymes (IsoA and IsoB) have been purified to homogeneity from a strain of Acinetobacter radioresistens grown on benzoate as the sole carbon and energy source. IsoA and IsoB are both homodimers composed of a single type of subunit with molecular mass of 38,600 and 37,700, Da respectively. In conditions of low ionic strength, IsoA can aggregate as a trimer, in contrast to IsoB, which maintains the dimeric structure, as also supported by the kinetic parameters (Hill numbers). IsoA is identical to the enzyme previously purified from the same bacterium grown on phenol, whereas the IsoB is selectively expressed using benzoate as carbon source. This is the first evidence of the presence of differently expressed C1,2O isozymes in A. radioresistens or more generally of multiple C1,2O isozymes in benzoate-grown Acinetobacter cells. Purified IsoA and IsoB contain approximately 1 iron(III) ion per subunit and both show electronic absorbance and EPR features typical of Fe(III) intradiol dioxygenases. The kinetic properties of the two enzymes such as the specificities toward substituted catechols, the main catalytic parameters, and their behavior in the presence of different kind of inhibitors are, unexpectedly, very similar, in contrast to most of the previously known dioxygenase isozymes.  相似文献   

7.
A purification procedure has been developed for an extradiol dioxygenase expressed in Escherichia coli, which was originally derived from a Pseudomonas putida strain able to grow on toluidine. Physical and kinetic properties of the enzyme have been investigated. The enzyme has a subunit Mr of 33,500 +/- 2000 by SDS/polyacrylamide-gel electrophoresis. Gel filtration indicates a molecular mass under non-denaturing conditions of 120,000 +/- 20,000. The N-terminal sequence (35 residues) of the enzyme has been determined and exhibits 50% identity with other extradiol dioxygenases. Fe(II) is a cofactor of the enzyme, as it is for other extradiol dioxygenases. The reactivity of this enzyme towards catechol and methyl-substituted catechols is somewhat different from that seen for other catechol 2,3-dioxygenases, with 3-methylcatechol cleaved at a higher rate than catechol or 4-methylcatechol. Km values for these substrates with this enzyme are all around 0.3 microM. The enzyme exhibits a bell-shaped pH profile with pKa values of 6.9 +/- 0.1 and 8.7 +/- 0.1. These results are compared with those found for other extradiol dioxygenases.  相似文献   

8.
1,2-Dihydroxynaphthalene dioxygenase was purified to homogeneity from a bacterium that degrades naphthalenesulfonic acids (strain BN6). The enzyme requires Fe2+ for maximal activity and consists of eight identical subunits with a molecular weight of about 33,000. Analysis of the NH2-terminal amino acid sequence revealed a high degree of homology (22 of 29 amino acids) with the NH2-terminal amino acid sequence of 2,3-dihydroxybiphenyl dioxygenase from strain Pseudomonas paucimobilis Q1. 1,2-Dihydroxynaphthalene dioxygenase from strain BN6 shows a wide substrate specificity and also cleaves 5-, 6-, and 7-hydroxy-1,2-dihydroxynaphthalene, 2,3- and 3,4-dihydroxybiphenyl, catechol, and 3-methyl- and 4-methylcatechol. Similar activities against the hydroxy-1,2-dihydroxynaphthalenes were also found in cell extracts from naphthalene-degrading bacteria.  相似文献   

9.
The reactions of Fe3+-EDTA and Fe2+-EDTA with O2- and CO2- were investigated in the pH range 3.8--11.8. Around neutral pH O2- reduces Fe3+-EDTA with a rate constant which is pH dependent kpH 5.8--8.1 = 2 - 10(6)--5 - 10(5) M-1 - s-1. At higher pH values this reaction becomes much slower. The CO2- radical reduces Fe3+-EDTA with kpH 3.8--1- = 5 +/- 1 - 10(7) M-1 - s-1 independent of pH. At pH 9--11.8, Fe2+-EDTA forms a complex with O2- with kFe2+-EDTA + O2 = 2 - 10(6)--4 - 10(6) M-1 - s-1 which is pH dependent. We measured the spectrum of Fe2+-EDTA-O2- and calculated epsilon 290 over max = 6400 +/- 800 M-1 - cm-1 in air-saturated solutions. In O2-saturated solutions another species is formed with a rate constant of 7 +/- 2 s-1. This intermediate absorbs around 300 nm but we were not able to identify it.  相似文献   

10.
The biodegradation of benzene, toluene, and chlorobenzenes by Pseudomonas putida involves the initial conversion of the parent molecules to cis-dihydrodiols by dioxygenase enzyme systems. The cis-dihydrodiols are then converted to the corresponding catechols by dihydrodiol dehydrogenase enzymes. Pseudomonas sp. strain JS6 uses a similar system for growth on toluene or dichlorobenzenes. We tested the wild-type organisms and a series of mutants for their ability to transform substituted phenols after induction with toluene. When grown on toluene, both wild-type organisms converted methyl-, chloro-, and nitro-substituted phenols to the corresponding catechols. Mutant strains deficient in dihydrodiol dehydrogenase or catechol oxygenase activities also transformed the phenols. Oxidation of phenols was closely correlated with the induction and activity of the toluene dioxygenase enzyme system.  相似文献   

11.
The biodegradation of benzene, toluene, and chlorobenzenes by Pseudomonas putida involves the initial conversion of the parent molecules to cis-dihydrodiols by dioxygenase enzyme systems. The cis-dihydrodiols are then converted to the corresponding catechols by dihydrodiol dehydrogenase enzymes. Pseudomonas sp. strain JS6 uses a similar system for growth on toluene or dichlorobenzenes. We tested the wild-type organisms and a series of mutants for their ability to transform substituted phenols after induction with toluene. When grown on toluene, both wild-type organisms converted methyl-, chloro-, and nitro-substituted phenols to the corresponding catechols. Mutant strains deficient in dihydrodiol dehydrogenase or catechol oxygenase activities also transformed the phenols. Oxidation of phenols was closely correlated with the induction and activity of the toluene dioxygenase enzyme system.  相似文献   

12.
Co(II) derivatives of Cu,Zn-superoxide dismutase having cobalt substituted for the copper (Co,Zn-superoxide dismutase and Co,Co-superoxide dismutase) were studied by optical and EPR spectroscopy. EPR and electronic absorption spectra of Co,Zn-superoxide dismutase are sensitive to solvent perturbation, and in particular to the presence of phosphate. This behaviour suggests that cobalt in Co,Zn-superoxide dismutase is open to solvent access, at variance with the Co(II) of the Cu,Co-superoxide dismutase, which is substituted for the Zn. Phosphate binding as monitored by optical titration is dependent on pH with an apparent pKa = 8.2. The absorption spectrum of Co,Zn-superoxide dismutase in water has three weak bands in the visible region (epsilon = 75 M-1 X cm-1 at 456 nm; epsilon = 90 M-1 X cm-1 at 520 nm; epsilon = 70 M-1 X cm-1 at 600 nm) and three bands in the near infrared region, at 790 nm (epsilon = 18 M-1 X cm-1), 916 nm (epsilon = 27 M-1 X cm-1) and 1045 nm (epsilon = 25 M-1 X cm-1). This spectrum is indicative of five-coordinate geometry. In the presence of phosphate, three bands are still present in the visible region but they have higher intensity (epsilon = 225 M-1 X cm-1 at 544 nm; epsilon = 315 M-1 X cm-1 at 575 nm; epsilon = 330 M-1 X cm-1 at 603 nm), whilst the lowest wavelength band in the near infrared region is at much lower energy, 1060 nm (epsilon = 44 M-1 X cm-1). The latter property suggests a tetrahedral coordination around the Co(II) centre. Addition of 1 equivalent of CN- gives rise to a stable Co(II) low-spin intermediate, which is characterized by an EPR spectrum with a highly rhombic line shape. Formation of this CN- complex was found to require more cyanide equivalents in the case of the phosphate adduct, suggesting that binding of phosphate may inhibit binding of other anions. Titration of the Co,Co-derivative with CN- provided evidence for magnetic interaction between the two metal centres. These results substantiate the contention that Co(II) can replace the copper of Cu,Zn-superoxide dismutase in a way that reproduces the properties of the native copper-binding site.  相似文献   

13.
2,3-Dihydroxybiphenyl dioxygenase, involved in biphenyl and polychlorinated biphenyl degradation, was purified from cell extracts of polychlorinated biphenyl-degrading Pseudomonas pseudoalcaligenes KF707 and Pseudomonas aeruginosa PAO1161 carrying the cloned bphC gene (encoding 2,3-dihydroxybiphenyl dioxygenase). The purified enzyme contained ferrous iron as a prosthetic group. The specific activities decreased with the loss of ferrous iron from the enzyme, and the activity was restored by incubation with ferrous iron in the presence of cysteine. Addition of ferric iron caused the complete inactivation of the enzyme. The molecular weight was estimated to be 250,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band with a molecular weight of 31,000, indicating that the enzyme consists of eight identical subunits. The enzyme was specific only for 2,3-dihydroxybiphenyl with a Km value of 87 microM. No significant activity was observed for 3,4-dihydroxybiphenyl, catechol, or 3-methyl- and 4-methylcatechol. The molecular weight, subunit structure, ferrous iron requirement, and NH2-terminal sequence (starting with serine up to 12 residues) were the same between the two enzymes obtained from KF707 and PAO1161 (bphC).  相似文献   

14.
Crawford JA  Li W  Pierce BS 《Biochemistry》2011,50(47):10241-10253
Cysteine dioxygenase (CDO) is a non-heme mononuclear iron enzyme that catalyzes the O(2)-dependent oxidation of L-cysteine (Cys) to produce cysteine sulfinic acid (CSA). In this study we demonstrate that the catalytic cycle of CDO can be "primed" by one electron through chemical oxidation to produce CDO with ferric iron in the active site (Fe(III)-CDO, termed 2). While catalytically inactive, the substrate-bound form of Fe(III)-CDO (2a) is more amenable to interrogation by UV-vis and EPR spectroscopy than the 'as-isolated' Fe(II)-CDO enzyme (1). Chemical-rescue experiments were performed in which superoxide (O(2)(?-)) anions were introduced to 2a to explore the possibility that a Fe(III)-superoxide species represents the first intermediate within the catalytic pathway of CDO. In principle, O(2)(?-) can serve as a suitable acceptor for the remaining 3-electrons necessary for CSA formation and regeneration of the active Fe(II)-CDO enzyme (1). Indeed, addition of O(2)(?-) to 2a resulted in the rapid formation of a transient species (termed 3a) observable at 565 nm by UV-vis spectroscopy. The subsequent decay of 3a is kinetically matched to CSA formation. Moreover, a signal attributed to 3a was also identified using parallel mode X-band EPR spectroscopy (g ~ 11). Spectroscopic simulations, observed temperature dependence, and the microwave power saturation behavior of 3a are consistent with a ground state S = 3 from a ferromagnetically coupled (J ~ -8 cm(-1)) high-spin ferric iron (S(A) = 5/2) with a bound radical (S(B) = 1/2), presumably O(2)(?-). Following treatment with O(2)(?-), the specific activity of recovered CDO increased to ~60% relative to untreated enzyme.  相似文献   

15.
The ground state magnetic properties of manganese superoxide dismutase from Thermus thermophilus in its native and reduced forms have been determined using saturation magnetization data. Parallel EPR measurements were used to verify that commonly encountered paramagnetic impurities were at low concentration relative to the metalloprotein. The native enzyme contains high spin Mn(III) (S = 2) with D = +2.44(5) cm-1 and E/D = 0. The reduced enzyme contains high spin Mn(II) (S = 5/2) with D = +0.50(5) cm-1 and E/D = 0.027. These results are in keeping with the suggestions of several previous groups of workers concerning the permissible oxidation and spin states of the manganese, but the zero field splitting parameters are unlike those of known manganese model compounds. In addition, the extinction coefficient for the visible region absorption maximum of the native enzyme and the corresponding difference extinction coefficient (native minus reduced) have been measured using saturation magnetization data to quantitate Mn(III) present. The result, epsilon 480 = 950(80) M-1 cm-1 (delta epsilon 480 = 740(60) M-1 cm-1) agrees with the previously reported value of epsilon 480 = 910 M-1 cm-1 found by total manganese determination (Sato, S. and Nakazawa, K. (1978) J. Biochem. 83, 1165-1171). The wide variation in the reported visible region extinction coefficients of manganese superoxide dismutases from different sources is discussed.  相似文献   

16.
Hydroxyquinol 1,2-dioxygenase was purified from cells of the soil bacterium Azotobacter sp. strain GP1 grown with 2,4,6-trichlorophenol as the sole source of carbon. The presumable function of this dioxygenase enzyme in the degradative pathway of 2,4,6-trichlorophenol is discussed. The enzyme was highly specific for 6-chlorohydroxyquinol (6-chloro-1,2,4-trihydroxybenzene) and hydroxyquinol (1,2,4-trihydroxybenzene) and was found to perform ortho cleavage of the hydroxyquinol compounds, yielding chloromaleylacetate and maleylacetate, respectively. With the conversion of 1 mol of 6-chlorohydroxyquinol, the consumption of 1 mol of O(inf2) and the formation of 1 mol of chloromaleylacetate were observed. Catechol was not accepted as a substrate. The enzyme has to be induced, and no activity was found in cells grown on succinate. The molecular weight of native hydroxyquinol 1,2-dioxygenase was estimated to 58,000, with a sedimentation coefficient of 4.32. The subunit molecular weight of 34,250 indicates a dimeric structure of the dioxygenase enzyme. The addition of Fe(sup2+) ions significantly activated enzyme activity, and metal-chelating agents inhibited it. Electron paramagnetic resonance data are consistent with high-spin iron(III) in a rhombic environment. The NH(inf2)-terminal amino acid sequence was determined for up to 40 amino acid residues and compared with sequences from literature data for other catechol and chlorocatechol dioxygenases.  相似文献   

17.
The 3-hydroxybenzoate inducible gentisate 1,2-dioxygenases have been purified to homogeneity from P. acidovorans and P. testosteroni, the two divergent species of the acidovorans group of Pseudomonas. Both enzymes exhibit a 40-fold higher specific activity than previous preparations and have an (alpha Fe)4 quaternary structure (holoenzyme Mr = 164,000 and 158,000, respectively). The enzymes have different amino terminal sequences, amino acid contents, and isoelectric points. Each enzyme contains essential active site iron that is EPR silent but binds nitric oxide quantitatively to give an EPR active complex (S = 3/2), showing that the iron is Fe2+ with coordination sites for exogenous ligands. The EPR spectra of these complexes are altered uniquely for each enzyme when gentisate is bound. This suggests that substrate binds to or near the iron and shows that the substrate-iron interactions of each enzyme are subtly different. The kinetic parameters for turnover of gentisate by the enzymes are nearly identical (kcat/Km = 4.3 x 10(6) s-1 M-1). Both enzymes cleave a wide range of gentisate analogs substituted in the 3 or 4 ring position, although at reduced rates relative to gentisate. Of the two enzymes, P. testosteroni gentisate 1,2-dioxygenase exhibits substantially lower kcat/Km values for the turnover of these compounds. Evidence for both steric and electronic substituent effects is obtained. In accord with the results of Wheelis et al. (Wheelis, M. L., Palleroni, N. J., and Stanier, R. Y. (1967) Arch. Mikrobiol. 59, 302-314), 3-hydroxybenzoate is shown to be metabolized by P. acidovorans through the gentisate pathway, and gentisate 1,2-dioxygenase is the only ring cleavage dioxygenase induced. In contrast, 3-hydroxybenzoate is metabolized by P. testosteroni exclusively through the protocatechuate pathway utilizing protocatechuate 4,5-dioxygenase, although gentisate 1,2-dioxygenase is coinduced. Growth of P. testosteroni on 3-O-methylbenzoate or 5-O-methylsalicylate is shown to result in a approximately 10-fold increase in the amount of gentisate 1,2-dioxygenase relative to protocatechuate 4,5-dioxygenase. Together, these results suggest that induction of gentisate 1,2-dioxygenase by 3-hydroxybenzoate in P. testosteroni may be adventitious and that this enzyme may function in fundamentally different metabolic pathways in the two related Pseudomonas species.  相似文献   

18.
The protein components of the 2-nitrotoluene (2NT) and nitrobenzene dioxygenase enzyme systems from Acidovorax sp. strain JS42 and Comamonas sp. strain JS765, respectively, were purified and characterized. These enzymes catalyze the initial step in the degradation of 2-nitrotoluene and nitrobenzene. The identical shared reductase and ferredoxin components were monomers of 35 and 11.5 kDa, respectively. The reductase component contained 1.86 g-atoms iron, 2.01 g-atoms sulfur, and one molecule of flavin adenine dinucleotide per monomer. Spectral properties of the reductase indicated the presence of a plant-type [2Fe-2S] center and a flavin. The reductase catalyzed the reduction of cytochrome c, ferricyanide, and 2,6-dichlorophenol indophenol. The ferredoxin contained 2.20 g-atoms iron and 1.99 g-atoms sulfur per monomer and had spectral properties indicative of a Rieske [2Fe-2S] center. The ferredoxin component could be effectively replaced by the ferredoxin from the Pseudomonas sp. strain NCIB 9816-4 naphthalene dioxygenase system but not by that from the Burkholderia sp. strain LB400 biphenyl or Pseudomonas putida F1 toluene dioxygenase system. The oxygenases from the 2-nitrotoluene and nitrobenzene dioxygenase systems each had spectral properties indicating the presence of a Rieske [2Fe-2S] center, and the subunit composition of each oxygenase was an alpha(3)beta(3) hexamer. The apparent K(m) of 2-nitrotoluene dioxygenase for 2NT was 20 muM, and that for naphthalene was 121 muM. The specificity constants were 7.0 muM(-1) min(-1) for 2NT and 1.2 muM(-1) min(-1) for naphthalene, indicating that the enzyme is more efficient with 2NT as a substrate. Diffraction-quality crystals of the two oxygenases were obtained.  相似文献   

19.
李朔  许楹  周宁一 《微生物学通报》2017,44(7):1513-1524
【目的】研究Sphingomonas sp.YL-JM2C菌株的生长特性,确定以三氯卡班作为碳源的生长情况。挖掘菌株YL-JM2C潜在的邻苯二酚1,2-双加氧酶及邻苯二酚2,3-双加氧酶基因,在大肠杆菌(Escherichia coli)中异源表达邻苯二酚双加氧酶基因并研究其酶学性质。【方法】优化S.sp.YL-JM2C菌株以三氯卡班作为碳源时的培养条件,并利用全自动生长曲线测定仪测定菌株生长情况,绘制生长曲线。通过生物信息学方法挖掘潜在的邻苯二酚双加氧酶基因,并分别在Escherichia coli BL21(DE3)中进行异源表达,通过AKTA快速纯化系统纯化蛋白,分别以邻苯二酚、3-和4-氯邻苯二酚为底物检测重组蛋白的酶学特性。【结果】菌株在pH为7.0-7.5时生长最优。在以浓度为4-8 mg/L的三氯卡班做为底物时,菌株适宜生长。当R2A培养基仅含有0.01%酵母提取物和无机盐时,加入终浓度为4 mg/L的三氯卡班可促进菌株生长。挖掘到6个潜在的邻苯二酚双加氧酶基因stcA1、stcA2、stcA3、stcE1、stcE2和stcE3,表达并通过粗酶液分析证明其中5个基因stcA1、stcA2、stcA3、stcE1和stcE2编码的酶均具有邻苯二酚双加氧酶和氯邻苯二酚双加氧酶的活性;纯化酶的底物范围研究揭示了StcA1、StcA2和StcA3均属于Ⅱ型邻苯二酚1,2-双加氧酶,StcE1和StcE2为两个新型邻苯二酚2,3-双加氧酶;它们酶动力学分析研究证明了5个酶对邻苯二酚的亲和力和催化效率最高,4-氯邻苯二酚次之。【结论】在同一菌株中发现了5个具有功能的邻苯二酚双加氧酶基因,stcA1、stcA2和stcA3编码的酶均属于Ⅱ型邻苯二酚1,2-双加氧酶,stcE1和stcE2为两个新型邻苯二酚2,3-双加氧酶编码基因。5个酶均具有催化邻苯二酚和氯邻苯二酚开环反应的功能,这为更好地理解微生物基因组内代谢邻苯二酚及其衍生物氯代邻苯二酚基因的多样性奠定了基础。  相似文献   

20.
The role of copper in pig kidney diamine oxidase has been probed by examining the effects of potential Cu(II) ligands on the spectroscopic and catalytic properties of the enzyme. In the presence of azide and thiocyanate, new absorption bands are evident at 410 nm (epsilon = 6300 M-1 cm-1) and 365 nm (epsilon = 3000 M-1 cm-1), respectively. These bands are assigned as ligand-to-metal charge-transfer transitions, N3-/SCN- leads to Cu(II). One anion/Cu(II) is coordinated in an equitorial position. Anion binding can be completely reversed by dialysis. The equilibrium constants for diamine oxidase-anion complex formation are 134 M-1 (N3-) and 55 M-1 (SCN-). Azide and thiocyanate are linear uncompetitive inhibitors with respect to the amine substrate when O2 is present at saturating concentrations. Taken together, the data are consistent with a functional role for Cu(II) in diamine oxidase catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号