首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The expression efficiency of the insect cells-baculovirus system used for insecticidal virus production and the expression of medically useful foreign genes is closely related with the dynamics of infection. The present studies develop a model of the dynamic process of insect cell infection with baculovirus at low multiplicity of  相似文献   

2.
In this communication we report the infection of armyworm Spodoptera frugiperda IPLB-Sf- 21 cells with Anticarsia gemmatalis multicapsid nucleopolyhedrovirus at low multiplicity of infection (MOI). The temporal variation of the extra-cellular virus and of the unstained cell was followed. The series of peaks in the virus concentration and the unstained cells count were used in order to infer the dynamic mechanism of the infection at low MOI. This mechanism can be used as the basis for the future formulation of a mathematical model of the process.  相似文献   

3.
The baculovirus‐insect cell expression system is widely used in producing recombinant proteins. This review is focused on the use of this expression system in developing bioprocesses for producing proteins of interest. The issues addressed include: the baculovirus biology and genetic manipulation to improve protein expression and quality; the suppression of proteolysis associated with the viral enzymes; the engineering of the insect cell lines for improved capability in glycosylation and folding of the expressed proteins; the impact of baculovirus on the host cell and its implications for protein production; the effects of the growth medium on metabolism of the host cell; the bioreactors and the associated operational aspects; and downstream processing of the product. All these factors strongly affect the production of recombinant proteins. The current state of knowledge is reviewed. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:1–18, 2014  相似文献   

4.
Spodoptera frugiperda (IPLB-SF-21) insect cells were grown in shake-flasks and infected with a temperature-sensitive baculovirus to express the gene of chloramphenicol acetyl transferase (CAT) in serum-free medium (SF-900) and two serum-supplemented media (IPL-41 and Grace's). In temperature-shift experiments (cell growth at 33°C followed by virus replication at 27°C 3–4 days later), virus and CAT production were much poorer in the serum-free medium than in serum-supplemented media, though cell growth was virtually the same in the different media tested. In all the three media, highest virus and CAT titers were obtained at the lowest MOI (multiplicity of infection 0.02). This result is contrary to that obtained in constant-temperature culture (27°C for both cell growth and virus replication). Virus and CAT production was greatly improved when the entire culture was run at constant temperature. It appeared that infected cells were severely damaged at 33°C (6°C above the optimal 27°C), resulting in little or no virus and protein production. As a result of these temperature-shift experiments, a larger-scale (141 air-lift bioreactor) serum-free culture of Sf-9 insect cells was conducted at constant temperature (27°C) to produce recombinant protein (β-galactosidase). A cell density as high as 1×107 cells.ml−1, and a β-gal concentration of up to 104,000 unit.ml−1 were achieved.  相似文献   

5.
Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N‐terminally His‐tagged NiV M protein in insect cells. A time‐course study demonstrated that the highest yield of recombinant M protein (400–500 μg) was expressed from infected cells 3 days after infection. A single‐step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme‐linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:171–177, 2016  相似文献   

6.
Modelling baculovirus infection of insect cells in culture   总被引:1,自引:0,他引:1  
Power JF  Nielsen LK 《Cytotechnology》1996,20(1-3):209-219
Conclusions Infection of insect cells with baculovirus is a potentially attractive means for producing both viral insecticides and recombinant proteins. The continuation of mathematical modelling studies such as those reviewed in this paper are essential in order to realise the full potential of the system. Through mathematical models it is possible to predict complex behaviours such as those observed when infecting cells at low MOI or when propagating virus in a continuous culture system. A purely empirical analysis of the same phenomena is very difficult if not impossible.The present three models are — despite their complexity and the effort that has gone into developing them — all first generation models. They summarise, to a large extent, our present quantitative understanding of the interaction between baculovirus and insect cells, when looked upon as a black box system. The binding and initial infection processes are still quantitatively poorly understood and further work in this area is much needed. On the longer term, a second generation of models is likely to consider interior processes such as viral DNA and RNA accumulation in much more detail using a structured model of the infection cycle.  相似文献   

7.
The production of viral vectors or virus-like particles for gene therapy or vaccinations using the baculovirus expression system is gaining in popularity. Recently, reports of a viral vector based on adeno-associated virus (AAV) produced in insect cells using the baculovirus expression vector system have been published. This system requires the triple infection of cells with baculovirus vectors containing the AAV gene for replication proteins (BacRep), the AAV gene for structural proteins (BacCap), and the AAV vector genome (BacITR). A statistical approach was used to investigate the multiplicities of infection of the three baculoviruses and the results were extended to the production of AAVs containing various transgenes. Highest AAV yields were obtained when BacRep and BacCap, the baculovirus vectors containing genes that code for proteins necessary for the formation of the AAV vector, were added in equal amounts at high multiplicities of infection. These combinations also resulted in the closest ratios of infectious to total AAV particles produced. Overexpression of the AAV structural proteins led to the production of empty AAV capsids, which is believed to overload the cellular machinery, preventing proper encapsidation of the AAV vector transgene, and decreased the viability of the insect cells. Delaying the input of BacCap, to reduce the amount of capsids produced, resulted in lower infectious AAV titers then when all three baculoviruses were put into the system at the same time. The amount of BacITR added to the system can be less than the other two without loss of AAV yield.  相似文献   

8.
Vectors based on adeno-associated viruses (AAV) are sought for therapeutic gene delivery because of their ability to transduce a variety of tissues with no significant immunological response. Production using the baculovirus expression vector (BEV)/insect cell system has the potential to meet the needs for pre-clinical and clinical trials. In this co-infection system, three baculoviruses are used to produce the AAV vector. A strategy aimed at increasing encapsidation/maturation of the viral vector involved varying the temperature over the course of the process. Cultures were subjected to temperature changes at various times pre- and post-infection (up to 24 h post-infection). It was found that raising the culture temperature to 30 degrees C at the time of infection nearly tripled the infectious titer. In fact, increasing the temperature to 30 degrees C at any time in the process investigated resulted in an increase in titer. Also, raising the culture to 33 degrees C or lowering the temperature to 24 degrees or 21 degrees C resulted in lower titers. The rise in infectious titer was also confirmed by an increase in DNase resistant particles (DRPs). Varying the temperature, however, did not affect the total amount of capsids significantly. Therefore increasing the culture temperature resulted in better encapsidation as determined by the ratio of capsids to DRPs to infectious particles. It is believed that an increase in early proteins and possibly a quicker cascade of baculovirus infection events resulted in this increased packaging efficiency.  相似文献   

9.
In the present paper, we offer a preliminary mathematical model that describes the dynamic process of cell infection with baculovirus at low multiplicity of infection (MOI). The model accounts for the chain of events that follow the infection of insect cells, namely the eclipse period, the budding of viral particles from those cells, their attachment to non-infected cells and the initiation of a new infection cycle. These cycles appear as fluctuations in the viral concentration of actual cell culture media. The potential of the present approach in simulating the in vitro production of biological insecticides is demonstrated. The influence of the shape of the virus-budding function is shown, and parameter sensitivity analysis is carried out. The model provides a quantitative tool for the analysis of this complex dynamic system.  相似文献   

10.
Hu YC  Wang MY  Bentley WE 《Cytotechnology》1997,24(2):143-152
A continuous process of insect cell (S f9) growth and baculovirus infection is tested with the sequential combination of a CSTR and a tubular reactor. A tubular infection reactor enables continuous introduction of baculovirus and therefore avoids the ‘passage effect’ observed in two-stage CSTR systems. Moreover, a tubular reactor can be used to test cell infection kinetics and the subsequent metabolism of infected insect cells. Unlike batch and CSTR culture, cells in a horizontally positioned tubular reactor settle due to poor mixing. We have overcome this problem by alternately introducing air bubbles and media and by maintaining a linear velocity sufficient to keep cells suspended. This article addresses the development of the tubular reactor and demonstrates its use as an infection system that complements the two-stage CSTR. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
A two-stage bioreactor scheme was developed for the large-scale production of recombinant proteins using a genetically engineered baculovirus/insect cell system. The first bioreactor was employed for cell growth and the second for cell infection. Silkworm Bm5 cells were infected with a recombinant baculovirus, BmNPV/P5.cat, containing a bacterial chloramphenicol acetyltransferase (CAT) gene under the control of the polyhedrin gene promoter of Bombyx mori nuclear polyhedrosis virus (BmNPV). This recombinant baculovirus has been used as an expression vector for the production of recombinant CAT enzyme. A specific productivity of 82 to 90 mug CAT/(10(6) cells) was obtained using the BmNPV/Bm5 expression system, a yield similar to that achieved using the AcNPV/Sf expression system. Repeated infection of high-density cell cultures did not reduce the specific productivity of the CAT enzyme. Most importantly, the problems associated with the infection of high-density cell cultures were resolved by means of controlled infection conditions and appropriate replenishment of spent culture medium following infection. The glucose uptake rate by the cells following infection was 50% higher than that by the cells before infection. Not only did the infection of high-density cell cultures result in consistent yields of 250 mg/L of CAT enzyme, but also the two-stage bioreactor system was proven to be reliable for a long-term operation beyond 600 h. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
A novel baculovirus-based protein expression strategy was developed to produce recombinant proteins in insect cells without contaminating baculovirus virions. This novel strategy greatly simplifies the downstream processing of biopharmaceuticals produced in insect cells. The formation of these virions is prevented by deletion of a baculovirus gene essential for virion formation. The deletion is trans-complemented in a transgenic insect cell line in which the baculovirus seed stock is produced. The Autographa californica multicapsid nucleopolyhedrovirus vp80 gene was selected for this purpose, as absence of VP80 prevented the formation of budded virus as well as occlusion-derived virus, while foreign gene expression was not affected. Sf9 insect cells were engineered to functionally complement the vp80 deletion in the expression vector virus during seed stock production. The trans-complemented vp80-deletion baculovirus seed produced an amount of recombinant protein similar to that produced with conventional baculovirus vectors but without contaminating virions. This novel expression method obviates the need to purify the virions away from the biopharmaceuticals.  相似文献   

13.
同时表达蓝舌病毒四个主要结构蛋白可装配成病毒样颗粒   总被引:2,自引:0,他引:2  
为研制蓝舌病毒(bluetongue virus,BTV)基因工程疫苗和进一步研究BTV结构与功能的关系,对BTV病毒样颗粒(VLP)的装配进行了研究。同时在昆虫细胞中表达BTV主要结构蛋白VP7、VP3、VP2与VP5,将细胞裂解液超速离心纯化后,发现主要存在两 形态的颗粒:一种与前文报道的病毒核心颗粒(CLP)相同,直径约为60nm ̄70nm,蛋白壳厚10nm ̄15nm;另一种大小为70nm ̄  相似文献   

14.
Previously, the Artogeia rapae lysozyme II (ARLII) gene was isolated and its complete nucleotide sequence was determined by RACE‐PCR from fat body of larvae injected with Escherichia coli. In the present study, the ARLII gene was expressed by using a baculovirus expression vector system (BEVS). The expression level of recombinant (r)ARLII protein was optimized by varying virus titer and time‐course of infection. The optimum protein expression conditions were infection of the cells at a multiplicity of infection of 10, and harvest at 84 h post‐infection. Under these conditions, we estimated the amount of rARLII produced in the BEVS to be 10 mg/mL. rARLII was purified from cell‐conditioned media using cation exchange column and reversed‐phase FPLC methods. Purified rARLII was able to form a clear zone in a lysoplate assay against Micrococcus luteus. The lytic activity was estimated to be 1.53 times higher than that of hen egg white lysozyme (HEWLZ) under the same conditions. The optimum temperature for the lytic activity of the rARLII was 50°C, and its temperature dependency was greater than that of HEWLZ at low temperatures (<65°C).  相似文献   

15.
Insect cells are widely used for expression of a variety of different proteins by using the baculovirus expression system. The applicability of this system depends on production of proteins which have biological properties similar to their native counterparts. One application has been the expression of viral capsid proteins and their assembly into empty capsid structures to provide new viral immunogens which retain complex antigenic sites. An important parameter for efficient folding and assembly of proteins into viral procapsids may be the intracellular pH, particularly for acid-labile particles such as foot-and-mouth disease virus (FMDV). Benzoic acid was used as an effective indicator of intracellular pH in insect cells and 3-O-methyl glucose to measure cell volumes. We have determined the intracellular volume of theSpodoptera frugiperda IPLB-Sf21 insect cells 0.50±0.08 pL per cell. Using the distribution of [14C]-benzoic acid, we show that the intracellular pH remains constant at pH 7.0 when the cells are grown in media with pH values ranging from 6.2 to 6.8 and, moreover, is not affected by baculovirus infection. These results suggest that insect cells are suitable to express and produce acid-labile structures via the baculovirus expression system and that assembly of proteins and viral procapsids could occur.  相似文献   

16.
The hypertrophy nuclear polyhedrosis virus of the armyworm, Pseudaletia unipuncta, causes a unique gradient of infected cells to form on the trachea. The movement and invasion of the virus apparently were not through adjacent intercellular membranes. The enveloped viruses emerged from the initially infected cell into an area between the cell plasma membrane and basal lamina, and then entered the uninfected tracheal cell either by lateral attachment and fusion of the viral envelope and the plasma membrane or by viropexis. The two methods of viral invasion into the cell suggest the presence of at least two phenotypically different enveloped viruses. Viropexis was initiated with an alignment of the peplomer spikes with regularly spaced, short radial striations on the inner coat of the plasma membrane. At a late state in viropexis, the viral envelope fused with the vacuole membrane, and an opening developed below the site of membrane fusion through which the nucleocapsid might enter the cytoplasm. Some nucleocapsids in membrane-lined vesicles resulting from viropexis appeared to be in a state of dissolution. Naked nucleocapsids were found along the nuclear envelope and within the nucleoplasm. No uncoating of the nucleocapsids was observed at the nucleopores, but uncoating seemed to occur in the nucleoplasm. Nucleocapsids were also found in the cytoplasm of nonsusceptible fat body cells, in which virus replication was not observed.  相似文献   

17.
Olfactory receptors (ORs) are the largest member of the G-protein-coupled receptors which mediate early olfactory perception in discriminating among thousands of odorant molecules. Assigning odorous ligands to ORs is a prerequisite to gaining an understanding of the mechanisms of odorant recognition. The functional expression of ORs represents a critical step in addressing this issue. Due to limitations in heterologous expression, very few mammal ORs have been characterized, and so far only one is from human origin. Consequently, OR function still remains poorly understood, especially in humans, whose genome encodes a restricted chemosensory repertoire compared with most mammal species. In this study, we have designed cassette baculovirus vectors to coexpress human OR 17-209 or OR 17-210 with either G(alpha olf) or G(alpha16) proteins in Sf9 cells. Each OR was found to be expressed at the cell surface and colocalized with both G(alpha) proteins. Using Ca2+ imaging, we showed that OR 17-209 and OR 17-210 proteins are activated by esters and ketones respectively. Odorant-induced calcium response was increased when ORs were coexpressed with G(alpha16) protein, whereas coexpression with G(alpha olf) abolished calcium signaling. This strategy has been found to overcome most of the limitations encountered when expressing an OR protein and has permitted odorant screening of functional ORs. Our approach could thus be of interest for further expression and ligand assignment of other orphan receptor proteins.  相似文献   

18.
BACKGROUND: The versatility of recombinant adeno-associated vector (rAAV) as a gene delivery system is due to the vector's ability to transduce different cell types as well as dividing and non-dividing cells. Large-scale production of rAAV remains one of the major challenges for continued development of pre-clinical and clinical studies, and for its potential commercialization. The baculovirus expression vectors (BEVS) and insect cells represent a potential method to produce rAAV economically at large scale. This technology uses three different BEVs (Bac-Rep, Bac-GFP, and Bac-VP) each at a multiplicity of infection (MOI) of 3. We reported previously the production of rAAV at 40 L scale using a stirred-tank bioreactor (STB). However, production in larger volumes is limited by the stability of the BEVs and amount of BEVs needed to achieve the target MOI of 3 per BEV. Here, the production parameters were optimized and the baculovirus stability was determined. METHODS: The stability of the three types of baculovirus used to produce rAAV was determined for six expansion passages by protein expression analysis. To economize baculovirus, MOI and cell density at time of infection (TOI) were evaluated initially at small scale and then applied to the 10 L scale. RESULTS: An MOI = 0.03 and TOI cell density of 1 x 10(6) cells/mL produced high titer rAAV without comprising yield. To confirm the scalability of the process, rAAV was produced in a 10 L STB using the optimized parameters obtaining a 10x increase in yield ( approximately 1 x 10(14) rAAV DNAse-resistant particles per liter). CONCLUSION: These findings contribute to the process development for large-scale production of rAAV for gene therapy applications and its commercialization.  相似文献   

19.
腺相关病毒(adeno-associated virus, AAV)是基因治疗领域最常使用的病毒载体之一,产量低、成本高是该产业面临的关键瓶颈问题。本研究旨在基于多基因缺失型杆状病毒,建立双病毒感染昆虫细胞以生产AAV的技术体系。首先,进行AAV生产用多基因缺失型重组杆状病毒的构建和扩增,并检测杆状病毒滴度及其感染细胞的效果;然后,使用双杆状病毒共感染昆虫细胞,并优化感染条件;最后,基于优化条件进行AAV生产,并检测评估产量、质量等相关指标。结果表明,AAV生产用多基因缺失型杆状病毒滴度较野生型无差异,感染后细胞存活率下降明显减缓。使用双病毒路线进行AAV优化生产,Bac4.0-1的基因组滴度为1.63×1011 VG/mL,Bac5.0-2的基因组滴度为1.02×1011 VG/mL,较野生型产量分别提升了240%和110%。电镜下,3组均具有正常的AAV病毒形态,且转导活性相近。本研究建立了基于多基因缺失型杆状病毒感染昆虫细胞的AAV生产体系,显著提高了AAV产量,具有一定的应用价值。  相似文献   

20.
Adequate production strategies of virus-like particles are among the challenges that must be addressed before such complex multimeric structures find practical applications as vaccines. Attainment of the correct stoichiometric relation between proteins that constitute virus-like particles should result in an increased productivity by maximizing the concentration of assembled proteins and preventing the accumulation of waste monomers. In this work, strategies for manipulating the relative concentration between two of the structural proteins that constitute rotavirus-like particles (VP2 and VP6) were explored using the insect cell baculovirus expression vector system. It was shown that multiplicity of infection is a useful tool for manipulating protein production rates and maximum concentrations in cultures expressing one or two recombinant proteins. Thus, multiplicity of infection can be employed for improving production of rotavirus-like particles. VP2 and VP6 production rates obtained during individual infections remained unchanged when both were simultaneously produced, indicating that such rates can be utilized for estimating protein concentrations during coexpression. Manipulation of the time of infection between the two recombinant baculoviruses, proposed here for the first time, also proved to be effective for controlling the relative protein concentrations. The use of such sequential infections constituted an effective production alternative that does not require high amounts of virus stocks and is easy to implement. In addition to VP2 and VP6, kinetic parameters for the individual production of the other two proteins (VP4 and VP7) that constitute rotavirus-like particles were also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号