首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurons in the anterior ventral (AV) thalamic nucleus of human adults were impregnated by Golgi-Kopsch impregnation method. Results showed that at least three morphological types of neurons could be recognized in the human AV thalamic nucleus. Type I neurons were medium to large with rich dendritic arborization. Both tufted and radiating dendritic branching patterns were seen in almost every neuron of this type. Only the initial axonal segments of these cells were impregnated suggesting that these axons were heavily myelinated. Type II neurons were medium in size with poor to moderate dendritic arborization. Many of these cells possess a few dendritic grape-like appendages. Long segments (up to 300 μm) of their axons were impregnated suggesting that these axons were either unmyelinated or thinly myelinated. These axons change their direction and form loops very often. No local branches were seen for these axons suggesting that they could be projection axons. Type III neurons were small with only one or two dendrites with poor arborization. No axons for these cells were seen in this study. The three neuronal types in the human AV thalamic nucleus were compared with neuronal types already described in other thalamic nuclei of human and non-human species. The results of this study might provide a morphological basis for further electrophysiological and / or pathological studies.  相似文献   

2.
The morphological and quantitative features of neurons in the adult human ventral anterior thalamic nucleus were studied in Golgi preparations. Two neuronal types were found and their quantitative features were studied. Golgi-type I neurons were medium to large cells with dense dendritic trees and dendritic protrusions and short hair-like appendages. They have somatic mean diameter of 30.8 μm (±9.4, n = 85). They have an average 100.3 dendritic branches, 48.97 dendritic branching points, and 58.85 dendritic tips. The mean diameters of their primary, secondary, and tertiary dendrites were 3.1 μm (±1, n = 80), 1.85 μm (±0.8, n = 145), and 1.5 μm (±0.4, n = 160), respectively. Golgi-type II neurons were small to medium cells with few sparsely branching dendrites and dendritic stalked appendages with or without terminal swellings. They have somatic mean diameters of 22.2 μm (±5.8, n = 120). They have an average 33.76 dendritic branches, 16.49 dendritic branching points, and 21.97 dendritic tips. The mean diameters of their primary, secondary, and tertiary dendrites were 1.6 μm (±0.86, n = 70), 1.15 μm (±0.55, n = 118), and 1 μm (±0.70, n = 95), respectively. These quantitative data may form the basis for further quantitative studies involving aging or some degenerative diseases that may affect cell bodies and/or dendritic trees of the Golgi-type I and/or Golgi-type II thalamic neurons.  相似文献   

3.
The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN) of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA) injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60–340 µm2. Labeled projection neurons supported 7–55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0×104 µm2. Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short “tufted” appendages arise mainly from the distal branches of dendrites; “spine-like” appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and “grape-like” appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.  相似文献   

4.
Summary The locus coeruleus of cat is populated by two types of neurons: medium sized ones, with plump cell bodies and relatively short dendrites; and small ones, with triangular bodies and relatively long dendrites. The former type is regarded here as typical of the centre, whereas the second type could simply represent displaced neurons from the adjacent griseum centrale. Electron microscopy failed to reveal any outstanding richness in pigment granules in kittens up to five weeks old. Very characteristic somatic appendages were found, mostly in the medium sized neurons. These somatic spines communicate with the perikaryon by means of a narrow neck region. A complex, multilayered, glial sheath surrounds the cells. This glial sheath is pierced by the somatic appendages, which are not surrounded by glia and make contact with axonal knobs. Typical dendritic spines appear to be absent. Axodendritic synapses are made on medium sized dendritic trunks. By and large, most of the synaptic vesicles present in the centre are of the small, clear-centered type. However, dense core vesicles extremely variegated in size and appearance were found, both in presynaptic and postsynaptic profiles. The possibility that dense core vesicles should be regarded as atypical lysosomes rich in by-products of the metabolism of catecholamines (melanine) has been considered.Supported by grant MA 4183 from the Medical Research Council of Canada.  相似文献   

5.
6.
Most neurons have elaborate dendritic trees that receive tens of thousands of synaptic inputs. Because postsynaptic responses to individual synaptic events are usually small and transient, the integration of many synaptic responses is needed to depolarize most neurons to action potential threshold. Over the past decade, advances in electrical and optical recording techniques have led to new insights into how synaptic responses propagate and interact within dendritic trees. In addition to their passive electrical and morphological properties, dendrites express active conductances that shape individual synaptic responses and influence synaptic integration locally within dendrites. Dendritic voltage-gated Na(+) and Ca(2+) channels support action potential backpropagation into the dendritic tree and local initiation of dendritic spikes, whereas K(+) conductances act to dampen dendritic excitability. While all dendrites investigated to date express active conductances, different neuronal types show specific patterns of dendritic channel expression leading to cell-specific differences in the way synaptic responses are integrated within dendritic trees. This review explores the way active and passive dendritic properties shape synaptic responses in the dendrites of central neurons, and emphasizes their role in synaptic integration.  相似文献   

7.
Summary 1. The morphology of neurons in the dentate gyrus of the adult human brain was analyzed with two variants of Golgi technique.2. About 20 neuronal types and subtypes were observed in the dentate gyrus of the adult human, several of which had not previously been described in the human. The human dentate gyrus harbors 4 types of neurons in the molecular layer, 3 types within the granule cell layer, and at least 10 types in the hilus.3. Compared to the granule neurons in the rat brain, human granule neurons show a much greater variability. Many of these human neurons have basal dendrites and/or axonal spines. Also, there are significant differences among these neurons regarding the density of their dendritic trees and dendritic spines. In contrast to the rat, human hilar neurons with complex spines have complex spines not only on their dendrites but also on their cell bodies.4. This study opens the door for further morphological studies involving specific diseases such as Alzheimer's disease and epilepsy.  相似文献   

8.
The ultrastructure of the nucleus of the basal optic root in an avian species (Columba livia) was investigated. The ectomamillary nucleus (EMN) in which terminates the basal optic tract reveals three types of neurons: 1) small round neurons bearing a scanty cytoplasm in organelles, 2) medium-sized neurons, spindle-shaped with a dense population of organelles and 3) large multipolar neurons with well developed perikaryal elements. Some of these neurons have their inner plasma-membrane which fuse to make junctional zones alternating between attachment plates and gap junctions. The analysis of the neuropil displays four types of vesicle-containing profiles (VCP), Type I VCP, identified as optic terminals, are numerous (49%), contain round vesicles (500-550 A) and establish Gray type I contacts principally with dendrites. They also participate in serial and triadic arrangements. Type II VCP have lighter hyaloplasm and are less numerous (6,7%). Rounded vesicles (450-500 A) with a clear content synapse also with Gray type I active zones on dendrites. Some of these profiles have the peculiarity of both a chemical and electrical transmission known as mixed synapses. Type III VCP are larger and contain a mixed population of rounded and flattened vesicles which synapse according to Gray type II. Type IV VCP are characterized by a light hyaloplasm where the microtubules are a predominant organelle. Their active zones are also of Gray type II.  相似文献   

9.
The descending contralateral movement detector (DCMD), an identified descending interneuron in the brain of the locust Schistocerca gregaria has been investigated by using light and electron microscopy. We describe the fine structure, distribution and numbers of synapses that it receives from another identified brain neuron, the lobular giant movement detector (LGMD), and from unidentified neurons. The DCMD dendrites emerging from the integrative segment vary in form and number between individuals and sexes but always form a flattened dendritic domain. The arborizations and the integrative segment appear to be exclusively postsynaptic. Two types of synaptic contacts (Type 1 and 2) onto the DCMD can be discerned as having either round (Type 1) or pleiomorphic synaptic vesicles (Type 2) and by large (Type 1) or small (Type 2) subsynaptic appositions. Contact zones of Type 1 synapses are smaller than those of Type 2. LGMD-synapses are of Type 1 and occur intermingled with presynaptic sites of unidentified units. Some branches of the DCMD receiving input from unidentified units are devoid of contacting LGMD processes. Synapses of both types are randomly distributed over the DCMD integrative segment and at fibres with similar sizes.Type 1 synapses are much more frequent than Type 2 synapses and their number is negatively correlated with fibre diameter. For a whole DCMD dendritic arborization, a total of 8500 active zones of chemical synapses has been calculated, including a minimum of 2250 LGMD-synapses and about 1000 Type 2 synapses. The DCMD may thus receive a considerable amount of input from as yet unidentified neurons.  相似文献   

10.
Computational modeling of dendritic morphology is a powerful tool for quantitatively describing complex geometrical relationships, uncovering principles of dendritic development, and synthesizing virtual neurons to systematically investigate cellular biophysics and network dynamics. A feature common to many morphological models is a dependence of the branching probability on local diameter. Previous models of this type have been able to recreate a wide variety of dendritic morphologies. However, these diameter-dependent models have so far failed to properly constrain branching when applied to hippocampal CA1 pyramidal cells, leading to explosive growth. Here we present a simple modification of this basic approach, in which all parameter sampling, not just bifurcation probability, depends on branch diameter. This added constraint prevents explosive growth in both apical and basal trees of simulated CA1 neurons, yielding arborizations with average numbers and patterns of bifurcations extremely close to those observed in real cells. However, simulated apical trees are much more varied in size than the corresponding real dendrites. We show that, in this model, the excessive variability of simulated trees is a direct consequence of the natural variability of diameter changes at and between bifurcations observed in apical, but not basal, dendrites. Conversely, some aspects of branch distribution were better matched by virtual apical trees than by virtual basal trees. Dendritic morphometrics related to spatial position, such as path distance from the soma or branch order, may be necessary to fully constrain CA1 apical tree size and basal branching pattern.  相似文献   

11.
12.
Summary Nerve cell types of the lateral geniculate body of man were investigated with the use of a transparent Golgi technique that allows study of not only the cell processes but also the pigment deposits. Three types of neurons have been distinguished:Type-I neurons are medium-to large-sized multipolar nerve cells with radiating dendrites. Dendritic excrescences can often be encountered close to the main branching points. Type-I neurons comprise a variety of forms and have a wide range of dendritic features. Since all intermediate forms can be encountered as well, it appears inadequate to subdivide this neuronal type. One pole of the cell body contains numerous large vacuolated lipofuscin granules, which stain weakly with aldehyde fuchsin.Type-II and type-III neurons are small cells with few, sparsely branching and extended dendrites devoid of spines. In Golgi preparations they cannot be distinguished from each other. Pigment preparations reveal that the majority of these cells contains small and intensely stained lipofuscin granules within their cell bodies (type II), whereas a small number of them remains devoid of any pigment (type III). Intermediate forms do not occur.  相似文献   

13.
Summary Transected ganglion cell axons from the adult retina are capable of reinnervating their central targets by growing into transplanted peripheral nerve (PN) segments. Injury of the optic nerve causes various metabolic and morphological changes in the retinal ganglion cell (RGC) perikarya and in the dendrites. The present work examined the dendritic trees of those ganglion cells surviving axotomy and of those whose severed axons re-elongated in PN grafts to reach either the superior colliculus (SC), transplanted SC, or transplanted autologous thigh muscle. The elaboration of the dendritic trees was visualized by means of the strongly fluorescent carbocyanine dye DiI, which is taken up by axons and transported to the cell bodies and from there to the dendritic branches. Alternatively, retinofugal axons regrowing through PN grafts were anterogradely filled from the eye cup with rhodamine B-isothiocyanate. The transection of the optic nerve resulted in characteristic changes in the ganglion cell dendrites, particularly in the degeneration of most of the terminal and preterminal dendritic branches. This occurred within the first 1 to 2 weeks following axotomy. The different types of ganglion cells appear to vary in their sensitivity to axotomy, as reflected by a rapid degeneration of certain cell dendrites after severance of the optic nerve. The most vulnerable cells were those with small perikarya and small dendritic fields (type II), whereas larger cells with larger dendritic fields (type I and III) were slower to respond and less dramatically affected. Regrowth of the lesioned axons in peripheral nerve grafts and reconnection of the retina with various tissues did not result in a significant immediate recovery of ganglion cell dendrites, although it did prevent some axotomized cells from further progression toward posttraumatic cell death.  相似文献   

14.
The authors studied the structure and diversity of retinal ganglion cells (GC) in the masked greenling Hexagrammos octogrammus. In vivo labelling with horseradish peroxidase revealed GCs of various structures in retinal wholemounts. A total of 154 cells were camera lucida drawn, and their digital models were generated. Each cell was characterized by 17 structural and topological parameters. Using nine clustering algorithms, a variety of clusterings were obtained. The optimum clustering was found using silhouette analysis. It was based on a set of three variables associated with dendritic field size and dendrite stratification depth in the retina. A total of nine cell types were discovered. A number of non-parametric tests showed significant pair-wise between-cluster differences in at least four parameters with medium and large effect sizes. Three large-field types differed mainly in dendritic field size, total dendrite length, level of dendrite stratification in the retina and position of somata. Six medium- to small-field types differed mainly in the structural complexity of dendritic arbors and level of dendrite arborization. Cells similar and obviously homologous to types 1–4 were identified in many fish species, including teleosts. Potential homologues of type 5 cells were identified in fewer teleost species. Cells similar to types 6–9 in relative dendritic field size and dendrite arborization pattern were also described in several teleostean species. Nonetheless, their homology is more questionable as their stratification patterns do not match so well as they do in large types. Potential functional matches of the GC types were identified in a number of teleostean species. Type 1 and 2 cells probably match spontaneously active units with the large receptive field centre, so-called dimming and lightening detectors; type 4 may be a counterpart of changing contrast detectors with medium receptive field centre size preferring fast-moving stimuli. Type 3 (biplexiform) cells have no obvious functional matches. Probable functional matches of types 6, 8 and 9 belong to ON-centre elements with small receptive fields such as ON-type direction-selective cells, ON-type spot detectors or ON-type spontaneously active units. Type 5 and 7 cells may match ON–OFF type units, in particular, changing contrast detectors or orientation-selective units. Potential functional matches of GC types presently described are involved in a wide spectrum of visual reactions related to adaptation to gradual change in illumination, predator escape, prey detection and capture, habitat selection and social behaviour.  相似文献   

15.
M Gioia  R Bianchi 《Acta anatomica》1992,144(2):127-134
A morphoquantitative analysis was carried out to clarify the cytoarchitectural organization of the paramedian pontine reticular formation (PPRF) which is considered to be an important site in the control of eye movements. The study was carried out on the cat, using the Golgi staining method. The topographic position and detailed structure of the neurons were demonstrated using morphoquantitative methods. On the basis of their neuronal arborization, fusiform neurons and two types of multipolar cells were identified. Fusiform neurons show dendrites which are given off from the two poles of the small- to medium-sized cell body. The arborization generally runs caudorostrally, ending inside the PPRF. These neurons are ubiquitous. Type 1 multipolar neurons, the most frequent elements of the neuronal population (60%), have a small- to large-sized cell body from which 2 or 3 primary spiny dendrites and the axon emerge. Their dendritic field is oval and generally oriented in the vertical plane. These neurons are scattered everywhere in the PPRF. Type 2 multipolar cells are large neurons endowed with numerous primary spiny dendrites constituting a wide round dendritic field and with a thick axon. They are located almost exclusively at the boundaries of the PPRF and preferentially in the caudal region. The characteristics of the neurons suggest that the fusiform cells may play an interneuronal role, while the multipolar neurons could have both a projective function and an important receptive role for the afferent fibers to the PPRF. The lack of homogeneity found among the multipolar neurons is in agreement with the variety of projective elements shown by functional investigations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
One Drosophila mushroom body (MB) is derived from four indistinguishable cell lineages, development of which involves sequential generation of multiple distinct types of neurons. Differential labeling of distinct MB clones reveals that MB dendrites of different clonal origins are well mixed at the larval stage but become restricted to distinct spaces in adults. Interestingly, a small dendritic domain in the adult MB calyx remains as a fourfold structure that, similar to the entire larval calyx, receives dendritic inputs from all four MB clones. Mosaic analysis of single neurons demonstrates that MB neurons, which are born around pupal formation, acquire unique dendritic branching patterns and consistently project their primary dendrites into the fourfold dendritic domain. Distinct dendrite distribution patterns are also observed for other subtypes of MB neurons. In addition, pruning of larval dendrites during metamorphosis allows for establishment of adult-specific dendrite elaboration/distribution patterns. Taken together, subregional differences exist in the adult Drosophila MB calyx, where processing and integration of distinct types of sensory information begin.  相似文献   

17.
The morphology of lateral preoptic (POL) and lateral hypothalamic (HLA) neurons was studied in 14- to 200-day-old rats with the chlorate-formaldehyde modification of the Golgi method. Drawings of 91 POL and HLA neurons revealed three distinct neuronal types within the MFB based on somatic size and shape and dendritic morphology. Class I neurons, which accounted for 75-80% of the neurons in the MFB, has fusiform or multipolar somata averaging 21 X 14 micron and 2-5 sparsely branched dendrites with a moderate number of sticklike spines. The extensive dendritic domains of Class I neurons ranged from 700 to 1,500 micron and were usually oriented perpendicular to the longitudinal fibers of the MFB. Both nonoriented and oriented Class I neurons were encountered. Nonoriented Class I neurons had expansive dendritic arbors which reached nearly all regions of the MFB in the coronal plane. Oriented Class I neurons had dendritic domains which were confined to specific regions (e.g., ventral-lateral) of the MFB. Class II neurons, which made up approximately 10% of the MFB neurons, had large multipolar somata averaging 30 X 17 micron and 2-5 stout dendrites which were densely covered with hairlike spines. Class II neurons also exhibited spines on their somata and proximal dendritic trunks and had dendritic domains of 700-1,000 micron. Class III neurons had small somata averaging 15 X 12 micron and restricted dendritic arbors of 500-700 micron in diameter. Class III neurons exhibited both spiny and spine-free dendrites and made up 10% of MFB neurons. Because of the parcellation of chemically coded fiber systems within the MFB, individual POL and HLA neurons may not be homogeneous in the type of afferents they receive from other brain areas.  相似文献   

18.
Anterior dorsal ventricular ridge (ADVR) is a major subcortical, telencephalic nucleus in snakes. Its structure was studied in Nissl, Golgi, and electron microscopic preparations in several species of snakes. Neurons in ADVR form a homogeneous population. They have large nuclei, scattered cisternae of rough endoplasmic reticulum in their cytoplasm, and bear dendrites from all portions of their somata. The dendrites have a moderate covering of pedunculated spines. Clusters of two to five cells with touching somata can be seen in Nissl, Golgi, and electron microscopic preparations. The area of apposition may contain a series of specialized junctions which resemble gap junctions. Three populations of axons can be identified in rapid Golgi preparations of snake ADVR. Type 1 axons course from the lateral forebrain bundle and bear small varicosities about 1 mu long. Type 2 axons arise from ADVR neurons and bear large varicosities about 5 mu long. The origin of the very thin type 3 axons is not known; they bear small varicosities about 1 mu long. The majority of axon terminals in ADVR are small (1 mu to 2 mu long), contain round synaptic vesicles, and form asymmetric active zones. This type of axon terminates on dendritic spines and shafts and on somata. A small percentage of terminals are large, 5 mu in length, contain round synaptic vesicles, and form asymmetric active zones. This type of axon terminates only on dendritic spines. A small percentage of terminals are small, contain pleomorphic synaptic vesicles, and form symmetric active zones. This type of axon terminates on dendritic shafts and on somata.  相似文献   

19.
猫视网膜多巴胺能神经元的形态和发育   总被引:1,自引:1,他引:0  
Morphology and development of dopaminergic neurons has been studied in the kitten retina, using tyrosine hydroxylase (TH) immunocytochemistry. TH immunoreactive (TH+) cells are already presented in whole amount and sectioned retina at first postnatal day (P1). According to soma size, shape, dendritic process pattern and immunoreactivity, two classes, type I or large dark staining TH+ cells and type II or small light staining TH+ cells are recognized. The TH I cells which consisting of normal placed DA amacrine cells, displaced DA amacrine cells and DA interplex-form-like cells, gradually mature during postnatal development, while TH II cells decrease quickly and through disappear at P30. After eye opening TH I amacrine cells, especially their dendrites develop quickly. The soma diameters increase from 11.8 microns (P1) to 14.2 microns (P30). The dendritic fields increase in size and complexity. At P1 the thick radiating dendrites emerge from the cell body with small or large "spines" and many growth cones. At P13 the dendritic field is markedly enlarged and only a few growth cones can be seen on some stained dendrites. In addition, the dendritic spines are no longer apparent and they are a part of rudimentary rings. By P30 the dendritic plexus of TH+ dendrites and rings in the out most part of IPL, typical of the adult cells, are complete. The influence of light on the development of DA cells after eye opening and the possibility of neurotransmitter changing are discussed.  相似文献   

20.
The anterior dorsal ventricular ridge was examined in the American alligator, Alligator mississippiensis, with cresyl violet and Golgi-Kopsch preparations. Four cytoarchitectonic areas (lateral dorsolateral, medial dorsolateral, intermediolateral, and lateral) can be distinguished by variations in the density of neurons and their tendency to form clusters of neurons with apposed somata. Three distinct types of neurons are distributed throughout these areas. Juxtaependymal neurons lie near the ventricular surface and have dendritic fields paralleling the ependymal layer. Their dendrites bear a moderate density of spines. Spiny neurons all have stellate shaped dendritic fields and dendrites that bear dendritic spines, but they vary greatly in the density of spines and the thickness of their dendrites. A very spiny variety has a high spine density and relatively thick dendrites. A moderately spiny variety has a moderate spine density and thin dendrites. A sparsely spiny variety has a low spine density and thick dendrites. Aspiny neurons have a relatively large number of dendrites that form a gnarled dendritic field and lack spines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号