首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The phosphorescence from enzyme-generated and -protected triplet acetone is very efficiently quenched by dyes intercalated into DNA. The process is unlikely to be due to energy transfer and is tentatively ascribed to electron transfer occurring within the DNA helix complex with the acting enzyme. This quenching markedly protects DNA from breaks induced by triplet acetone. In the case of some barely emissive enzyme-generated triplet carbonyl species, it is possible to detect a weak emission resulting from the interaction with dye X DNA; this emission may be associated with back electron transfer.  相似文献   

2.
Bloom's syndrome (BS) and Fanconi anemia (FA) are autosomal recessive disorders characterized by cancer and chromosomal instability. BS and FA group J arise from mutations in the BLM and FANCJ genes, respectively, which encode DNA helicases. In this work, FANCJ and BLM were found to interact physically and functionally in human cells and co-localize to nuclear foci in response to replication stress. The cellular level of BLM is strongly dependent upon FANCJ, and BLM is degraded by a proteasome-mediated pathway when FANCJ is depleted. FANCJ-deficient cells display increased sister chromatid exchange and sensitivity to replication stress. Expression of a FANCJ C-terminal fragment that interacts with BLM exerted a dominant negative effect on hydroxyurea resistance by interfering with the FANCJ-BLM interaction. FANCJ and BLM synergistically unwound a DNA duplex substrate with sugar phosphate backbone discontinuity, but not an 'undamaged' duplex. Collectively, the results suggest that FANCJ catalytic activity and its effect on BLM protein stability contribute to preservation of genomic stability and a normal response to replication stress.  相似文献   

3.
Dengue fever is one of the most widespread tropical diseases in the world. The disease is caused by a virus member of the Flaviviridae family, a group of enveloped positive sense single-stranded RNA viruses. Dengue virus infection is mediated by virus glycoprotein E, which binds to the cell surface. After uptake by endocytosis, this protein induces the fusion between viral envelope and endosomal membrane at the acidic environment of the endosomal compartment. In this work, we evaluated by steady-state and time-resolved fluorescence spectroscopy the interaction between the peptide believed to be the dengue virus fusion peptide and large unilamellar vesicles, studying the extent of partition, fusion capacity and depth of insertion in membranes. The roles of the bilayer composition (neutral and anionic phospholipids), ionic strength and pH of the medium were also studied. Our results indicate that dengue virus fusion peptide has a high affinity to vesicles composed of anionic lipids and that the interaction is mainly electrostatic. Both partition coefficient and fusion index are enhanced by negatively charged phospholipids. The location determined by differential fluorescence quenching using lipophilic probes demonstrated that the peptide is in an intermediate depth in the hemilayers, in-between the bilayer core and its surface. Ultimately, these data provide novel insights on the interaction between dengue virus fusion peptide and its target membranes, namely, the role of oligomerization and specific types of membranes.  相似文献   

4.
Dengue fever is one of the most widespread tropical diseases in the world. The disease is caused by a virus member of the Flaviviridae family, a group of enveloped positive sense single-stranded RNA viruses. Dengue virus infection is mediated by virus glycoprotein E, which binds to the cell surface. After uptake by endocytosis, this protein induces the fusion between viral envelope and endosomal membrane at the acidic environment of the endosomal compartment. In this work, we evaluated by steady-state and time-resolved fluorescence spectroscopy the interaction between the peptide believed to be the dengue virus fusion peptide and large unilamellar vesicles, studying the extent of partition, fusion capacity and depth of insertion in membranes. The roles of the bilayer composition (neutral and anionic phospholipids), ionic strength and pH of the medium were also studied. Our results indicate that dengue virus fusion peptide has a high affinity to vesicles composed of anionic lipids and that the interaction is mainly electrostatic. Both partition coefficient and fusion index are enhanced by negatively charged phospholipids. The location determined by differential fluorescence quenching using lipophilic probes demonstrated that the peptide is in an intermediate depth in the hemilayers, in-between the bilayer core and its surface. Ultimately, these data provide novel insights on the interaction between dengue virus fusion peptide and its target membranes, namely, the role of oligomerization and specific types of membranes.  相似文献   

5.
6.
Assembly of amyloid-beta peptide (Aβ) into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in Alzheimer's disease (AD) and interfering with Aβ aggregation is an important strategy in the development of novel therapeutic approaches. Prior studies have shown that the double N-methylated analogue of islet amyloid polypeptide (IAPP) IAPP-GI, which is a conformationally constrained IAPP analogue mimicking a non-amyloidogenic IAPP conformation, is capable of blocking cytotoxic self-assembly of Aβ. Here we investigate the interaction of IAPP-GI with Aβ40 and Aβ42 using NMR spectroscopy. The most pronounced NMR chemical shift changes were observed for residues 13-20, while residues 7-9, 15-16 as well as the C-terminal half of Aβ--that is both regions of the Aβ sequence that are converted into β-strands in amyloid fibrils--were less accessible to solvent in the presence of IAPP-GI. At the same time, interaction of IAPP-GI with Aβ resulted in a concentration-dependent co-aggregation of Aβ and IAPP-GI that was enhanced for the more aggregation prone Aβ42 peptide. On the basis of the reduced toxicity of the Aβ peptide in the presence of IAPP-GI, our data are consistent with the suggestion that IAPP-GI redirects Aβ into nontoxic "off-pathway" aggregates.  相似文献   

7.
We have previously described the structure and the ability of a dimeric analog of the antimicrobial peptide Aurein 1.2 to aggregate Candida albicans. In this study, circular dichroism and fluorescence spectroscopy data showed that this aggregation is related to the interaction between the peptide and mannans, the main component of yeast cell wall. In this context, we propose a model in which dimers interact with the polysaccharide leading to cells aggregation.  相似文献   

8.
9.
Guinea pig caecal circular smooth muscle cells were used to determine whether brain natriuretic peptide (BNP) can inhibit the contractile response produced by cholecystokinin-octapeptide (CCK-8). In addition, we examined the effect of an inhibitor of cAMP-dependent protein kinase, an inhibitor of particulate or soluble guanylate cyclase, an atrial natriuretic peptide (ANP) antagonist (ANP 1-11), and selective receptor protection on the BNP-induced relaxation of these muscle cells. The effect of BNP on cAMP formation was also examined. BNP inhibited the contractile response produced by CCK-8 in a dose-response manner, with an IC50 value of 8.5 nM, and stimulated the production of cAMP. The inhibitor of cAMP-dependent protein kinase and the inhibitor of soluble guanylate cyclase significantly inhibited the relaxation produced by BNP. In contrast, the inhibitor of particulate guanylate cyclase did not have any significant effect on the relaxation produced by BNP. ANP 1-11 significantly but partially inhibited the relaxation produced by BNP. The muscle cells where CCK-8 and ANP binding sites were protected completely preserved the inhibitory response to ANP, but partially preserved the inhibitory response to BNP. The muscle cells where CCK-8 and BNP binding sites were protected completely preserved the inhibitory response to both ANP and BNP. This study demonstrates that BNP induces relaxation of these muscle cells via both ANP binding sites coupled to soluble guanylate cyclase and distinct BNP binding sites coupled to adenylate cyclase.  相似文献   

10.
Captopril, an angiotensin converting enzyme inhibitor, has been shown to increase prostaglandin production by an as yet unknown mechanism, which this study was designed to explore. Isolated rat heart was perfused by the Langendorff technique for 15 minutes in the presence or absence of captopril. Ischemia was then induced for 60 minutes by terminating the coronary flow, followed by 60 minutes of reperfusion. Our results indicate that captopril stimulated prostaglandin and thromboxane production, but it inhibited malonaldehyde formation. Coronary flow and high energy phosphate compounds were increased, but lactate dehydrogenase and creatine kinase release decreased, demonstrating cardioprotective effects. Captopril also inhibited the production of hydroxyl radical in the heart during reperfusion, suggesting that stimulated prostaglandin production may be linked with the generation of free radicals via the eicosanoid system.  相似文献   

11.
12.
13.
1. The cytotoxicity of the polyphenolic potential male antifertility agent gossypol was investigated on isolated mouse islets cells. 2. Gossypol shared many properties with the diabetogenic agent alloxan. 3. Gossypol (0.1-1.0 mmol/l) induced a concentration-dependent increase of Trypan Blue uptake by the cells, indicating an increase of membrane permeability to the dye. 4. Trypan Blue uptake induced by 0.5 mmol/l gossypol was inhibited by concomitant incubation of the cells with enzymatic (200 mg/l superoxide dismutase, 200 mg/l catalase, 3 mmol/l cytochrome-c), or low-molecular weight (50 mmol/l D-mannitol) scavengers of oxygen radicals, and the metal chelator diethylenetriaminepentacetic acid (DTPA) (50 mumol/l). 5. The results support the hypothesis that gossypol is B-cytotoxic by generation of noxious free radicals and that when proposing gossypol as a male antifertility agent, studies to exclude gossypol as a diabetogenic agent should first be performed in vivo.  相似文献   

14.
15.
Peptide presentation by major histocompatibility complex (MHC) molecules is of central importance for immune responses, which are triggered through recognition of peptide-loaded MHC molecules (pMHC) by cellular ligands such as T-cell receptors (TCR). However, a unifying link between structural features of pMHC and cellular responses has not been established. Instead, pMHC/TCR binding studies suggest conformational and/or flexibility changes of the binding partners as a possible cause of differential T-cell stimulation, but information on real-time dynamics is lacking. We therefore probed the real-time dynamics of a MHC-bound nonapeptide (m9), by combining time-resolved fluorescence depolarization and molecular dynamics simulations. Here we show that the nanosecond dynamics of this peptide presented by two human MHC class I subtypes (HLA-B*2705 and HLA-B*2709) with differential autoimmune disease association varies dramatically, despite virtually identical crystal structures. The peptide dynamics is linked to the single, buried polymorphic residue 116 in the peptide binding groove. Pronounced peptide flexibility is seen only for the non-disease-associated subtype HLA-B*2709, suggesting an entropic control of peptide recognition. Thermodynamic data obtained for two additional peptides support this hypothesis.  相似文献   

16.
Superoxide free radical and superoxide dismutase   总被引:13,自引:0,他引:13  
  相似文献   

17.
Different defense systems against oxidative damage leading to pathological conditions are described. The superoxide radical plays a primary role in initiating and sustaining biological damage and is responsible for the production of other free radicals and lipoperoxides. Certain pathologies are associated with these events such as post-irradiation necrosis, or the Spanish Toxic Oil Syndrome. Superoxide dismutase has been used clinically with considerable success, particularly the liposomal form, to treat various diseases in which it has been shown that the superoxide radical plays an important role. Although the mechanism of the enzymic reaction catalysed by superoxide dismutase is now well defined, a complete explanation of the anti-inflammatory properties in vivo of the enzyme has not yet been established.  相似文献   

18.
In this work, we studied the fluorescence quenching of the anionic conjugated polyelectrolyte PPE–SO3 by the paramagnetic species 2,2,6,6‐tetramethylpiperidine‐N‐oxide free radical (TEMPO) in aqueous solution. At low quencher concentration the Stern–Volmer constant is 94 mol/L; as the quencher concentration increases the Stern–Volmer plots become superlinear. Ascorbic acid is used to reduce TEMPO to the corresponding hydroxylamine and the PPE–SO3 fluorescence is fully recovered. Under a large excess of ascorbic acid over TEMPO, the rise of fluorescence followed pseudo‐first‐order kinetics. The second‐order rate constant calculated from this time course is 0.7 mol/L/s. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
To study the interaction of the antioxidant vitamins C and E in a biological system, we used electron spin resonance (ESR) spectroscopy to make serial measurement of ascorbate tocopheroxyl free radicals in plasma subjected to continuous free radical-mediated oxidative stress. Upon initiation of a continuous oxidative stress, we observed an immediate increase in the concentration of ascorbate radical, which reached a peak, and then steadily declined. Only after the virtual disappearance of the ascorbate radical did we observe the appearance of the tocopheroxyl radical. These data are consistent with the hypothesis that ascorbate is the terminal small-molecule antioxidant in biological systems. This is the first experimental demonstration that the predicted thermodynamic hierarchy of ascorbate, -tocopherol, and their free radicals holds in a biological system containing endogenous levels of these antioxidant vitamins.  相似文献   

20.
We studied the results of mutating alanine --> glycine at three positions of a collagen-like peptide in an effort to develop a computational method for predicting the energetic and structural effects of a single point genetic mutation in collagen, which is associated with the clinical diagnosis of Osteogenesis Imperfecta (OI). The differences in free energy of denaturation were calculated between the collagen-like peptides [(POG)(4)(POA)(POG)(4)](3) and [(POG)(10)](3) (POG: proline-hydroxyproline-glycine).* Our computational results, which suggest significant destabilization of the collagen-like triple-helix upon the glycine --> alanine mutations, correlate very well with the experimental free energies of denaturation. The robustness of our collagen-like peptide model is shown by its reproduction of experimental results with both different simulation paths and different lengths of the model peptide. The individual free energy for each alanine --> glycine mutation (and the reverse free energy, glycine --> alanine mutation) in the collagen-like peptide has been calculated. We find that the first alanine introduced into the triple helix causes a very large destabilization of the helix, but the last alanine introduced into the same position of an adjacent chain causes a very small change in the peptide stability. Thus, our results demonstrate that each mutation does not contribute equally to the free energy. We find that the sum of the calculated individual residues' free energy can accurately model the experimental free energy for the whole peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号