首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J. M. Ranz  C. Segarra    A. Ruiz 《Genetics》1997,145(2):281-295
Thirty-three DNA clones containing protein-coding genes have been used for in situ hybridization to the polytene chromosomes of two Drosophila repleta group species, D. repleta and D. buzzatii. Twenty-six clones gave positive results allowing the precise localization of 26 genes and the tentative identification of another nine. The results were fully consistent with the currently accepted chromosomal homologies and in no case was evidence for reciprocal translocations or pericentric inversions found. Most of the genes mapped to chromosomes 2 and 4 that are homologous, respectively, to chromosome arms 3R and 3L of D. melanogaster (Muller's elements E and D). The comparison of the molecular organization of these two elements between D. melanogaster and D. repleta (two species that belong to different subgenera and diverged some 62 million years ago) showed an extensive reorganization via paracentric inversions. Using a maximum likelihood procedure, we estimated that 130 paracentric inversions have become fixed in element E after the divergence of the two lineages. Therefore, the evolution rate for element E is approximately one inversion per million years. This value is comparable to previous estimates of the rate of evolution of chromosome X and yields an estimate of 4.5 inversions per million years for the whole Drosophila genome.  相似文献   

2.
González J  Casals F  Ruiz A 《Genetics》2007,175(1):167-177
A combination of cytogenetic and bioinformatic procedures was used to test the chromosomal phylogeny relating Drosophila buzzatii with D. repleta. Chromosomes X and 2, harboring most of the inversions fixed between these two species, were analyzed. First, chromosomal segments conserved during the divergence of the two species were identified by comparative in situ hybridization to the D. repleta chromosomes of 180 BAC clones from a BAC-based physical map of the D. buzzatii genome. These conserved segments were precisely delimited with the aid of clones containing inversion breakpoints. Then GRIMM software was used to estimate the minimum number of rearrangements necessary to transform one genome into the other and identify all possible rearrangement scenarios. Finally, the most plausible inversion trajectory was tested by hybridizing 12 breakpoint-bearing BAC clones to the chromosomes of seven other species in the repleta group. The results show that chromosomes X and 2 of D. buzzatii and D. repleta differ by 12 paracentric inversions. Nine of them are fixed in chromosome 2 and entail two breakpoint reuses. Our results also show that the cytological relationship between D. repleta and D. mercatorum is closer than that between D. repleta and D. peninsularis, and we propose that the phylogenetic relationships in this lineage of the repleta group be reconsidered. We also estimated the rate of rearrangement between D. repleta and D. buzzatii and conclude that rates within the genus Drosophila vary substantially between lineages, even within a single species group.  相似文献   

3.
The locations of 77 markers along the chromosomal elements B (41 markers) and C (36 markers) of Drosophila subobscura, D. pseudoobscura, and D. melanogaster were obtained by in situ hybridization on polytene chromosomes. In comparisons between D. subobscura and D. pseudoobscura, 10 conserved segments (accounting for 32% of the chromosomal length) were detected on element B and eight (17% of the chromosomal length) on element C. The fixation rate of paracentric inversions inferred by a maximum likelihood approach differs significantly between elements. Muller's element C (0.17 breakpoints/Mb/million years) is evolving two times faster than element B (0.08 breakpoints/Mb/million years). This difference in the evolutionary rate is paralleled by differences in the extent of chromosomal polymorphism in the corresponding lineages. Element C is highly polymorphic in D. subobscura, D. pseudoobscura, and in other obscura group species such as D. obscura and D. athabasca. In contrast, the level of polymorphism in element B is much lower in these species. The fixation rates of paracentric inversions estimated in the present study between species of the Sophophora subgenus are the highest estimates so far reported in the genus for the autosomes. At the subgenus level, there is also a parallelism between the high fixation rate and the classical observation that the species of the Sophophora subgenus tend to be more polymorphic than the species of the Drosophila subgenus. Therefore, the detected relationship between level of polymorphism and evolutionary rate might be a general characteristic of chromosomal evolution in the genus Drosophila.  相似文献   

4.
Bhutkar A  Schaeffer SW  Russo SM  Xu M  Smith TF  Gelbart WM 《Genetics》2008,179(3):1657-1680
The availability of 12 complete genomes of various species of genus Drosophila provides a unique opportunity to analyze genome-scale chromosomal rearrangements among a group of closely related species. This article reports on the comparison of gene order between these 12 species and on the fixed rearrangement events that disrupt gene order. Three major themes are addressed: the conservation of syntenic blocks across species, the disruption of syntenic blocks (via chromosomal inversion events) and its relationship to the phylogenetic distribution of these species, and the rate of rearrangement events over evolutionary time. Comparison of syntenic blocks across this large genomic data set confirms that genetic elements are largely (95%) localized to the same Muller element across genus Drosophila species and paracentric inversions serve as the dominant mechanism for shuffling the order of genes along a chromosome. Gene-order scrambling between species is in accordance with the estimated evolutionary distances between them and we find it to approximate a linear process over time (linear to exponential with alternate divergence time estimates). We find the distribution of synteny segment sizes to be biased by a large number of small segments with comparatively fewer large segments. Our results provide estimated chromosomal evolution rates across this set of species on the basis of whole-genome synteny analysis, which are found to be higher than those previously reported. Identification of conserved syntenic blocks across these genomes suggests a large number of conserved blocks with varying levels of embryonic expression correlation in Drosophila melanogaster. On the other hand, an analysis of the disruption of syntenic blocks between species allowed the identification of fixed inversion breakpoints and estimates of breakpoint reuse and lineage-specific breakpoint event segregation.  相似文献   

5.
Twenty-four biotin-labeled recombinant-DNA probes which contained putative unique-sequence Drosophila melanogaster DNA were hybridized to larval salivary-gland chromosomes of D. melanogaster and Drosophila virilis. All probes hybridized to D. melanogaster chromosomes at the expected sites. However, one probe hybridized to at least 16 additional sites, and one hybridized to one additional site. Thirteen probes hybridized strongly to D. virilis chromosomes, four hybridized weakly and infrequently, and seven did not hybridize. Probes representing two multigene families (beta-tubulin and yolk-protein) hybridized as would be expected if all sites had been conserved in the two species on the same chromosomal elements. The multiple hybridization sites of a third probe which may represent a multigene family were also conserved. The results were consistent with H.J. Muller's proposal that chromosomal elements have been conserved during evolution of this genus.  相似文献   

6.
Chromosomal rearrangements abound in nature and can be studied in detail in organisms with polytene chromosomes. In Drosophila and in Anopheline mosquitoes most speciation processes seem to be associated with the establishment of chromosomal rearrangements, particularly of paracentric inversions. It is not known what triggers inversions in natural populations. In the laboratory inversions are commonly generated by X-rays, mutagens or after the activity of certain transposable elements (TEs). The Anopheles gambiae complex is comprised of six sibling species, each one characterized by the presence of fixed paracentric inversions on their chromosomes. Two of these, An. gambiae s.s. and An. arabiensis, are the most important vectors of human malaria and are structured into sub-populations, each carrying a characteristic set of polymorphic chromosomal inversions. We have cloned the breakpoints of the naturally occurring polymorphic inversion In(2R)d' of An. arabiensis. Analysis of the surrounding sequences demonstrated that adjacent to the distal breakpoint lies a transposable element that we called Odysseus. Characteristics of Odysseus' terminal region and its cytological distribution in different strains as well as within the same strain indicate that Odysseus is an actively transposing element. The presence of Odysseus at the junction of the naturally occurring inversion In(2R)d' suggests that the inversion may be the result of the TEs activity. Cytological evidence from Drosophila melanogaster has also implicated the hobo transposable element in the generation of certain Hawaiian endemic inversions. This picture supports the hypothesis of the important role of TEs in generating natural inversions.  相似文献   

7.
8.
After accumulating mutations by the aid of marked inversions, spontaneous occurrence rates of chromosome aberrations were estimated for 1148 chromosome lines that originated from five stem line second chromosomes of Drosophila melanogaster. In chromosome lines originating from three stem chromosomes (CH, PQ, and RT), mutations were accumulated for 7550, 7252, and 7256 chromosome generations, respectively, but no structural change was detected. For the chromosome lines that originated from the other two stem chromosomes, the situation was different: Twenty aberrations (19 paracentric inversions and 1 translocation between the second and the third chromosomes) during 45990 chromosome generations took place in the 500 chromosome lines derived from stem line chromosome (AW), and 92 aberrations (83 paracentric inversions, 6 pericentric inversions, 2 translocations between the second and the third chromosomes and 1 transposition) arose during 45006 chromosome generations in the 500 chromosome lines derived from stem line chromosome (JH). For the AW group the occurrence rate becomes 0.00043 per chromosome per generation for all aberrations and 0.00041 for inversions. For the JH group the corresponding rates are 0.00204 and 0.00198, respectively.-A non-random distribution of the breakpoint on the salivary gland chromosome was observed and the breakpoints were concentrated in the regions 26, 29, 33, and 34.-The cytoplasms and the chromosomes (other than the second chromosomes) were made approximately uniform throughout the experiments. Thus, this remarkable variability in the occurrence rate is most probably due to the differences in one or more chromosomal elements on the original five stem chromosomes. The mutable chromosomes (AW and JH) appear to carry a kind of mutator factor such as hi (Ives 1950).  相似文献   

9.
Pinsker W  Sperlich D 《Genetics》1984,108(4):913-926
Enzyme loci located on chromosome J and U were mapped cytologically by means of a Y translocation technique. A linkage map of the two chromosomes was established in a parallel experiment and the recombination frequency in different regions of the chromosomes determined. A comparison of the cytogenetic localization of the enzyme genes in D. subobscura and D. melanogaster indicates that many paracentric inversions must have taken place in the course of divergent evolution. However, no displacements of genes from one element to another due to pericentric inversions, reciprocal translocations or transposing elements can be observed. In spite of the large number of structural rearrangements that have occurred in the phylogeny of the genus Drosophila, gross similarities of banding pattern in homologous regions of the chromosomes of the two species become apparent.  相似文献   

10.
Comparisons of gene orders between species permit estimation of the rate of chromosomal evolution since their divergence from a common ancestor. We have compared gene orders on three chromosomes of Drosophila pseudoobscura with its close relative, D. miranda, and the distant outgroup species, D. melanogaster, by using the public genome sequences of D. pseudoobscura and D. melanogaster and approximately 50 in situ hybridizations of gene probes in D. miranda. We find no evidence for extensive transfer of genes among chromosomes in D. miranda. The rates of chromosomal rearrangements between D. miranda and D. pseudoobscura are far higher than those found before in Drosophila and approach those for nematodes, the fastest rates among higher eukaryotes. In addition, we find that the D. pseudoobscura chromosome with the highest level of inversion polymorphism (Muller's element C) does not show an unusually fast rate of evolution with respect to chromosome structure, suggesting that this classic case of inversion polymorphism reflects selection rather than mutational processes. On the basis of our results, we propose possible ancestral arrangements for the D. pseudoobscura C chromosome, which are different from those in the current literature. We also describe a new method for correcting for rearrangements that are not detected with a limited set of markers.  相似文献   

11.
Thirty P1 clones from the X chromosome (Muller's A element) of Drosophila melanogaster were cross-hybridized in situ to Drosophila subobscura and Drosophila pseudoobscura polytene chromosomes. An additional recombinant phage Dsuby was also used as a marker. Twenty-three (77%) of the P1 clones gave positive hybridization on D. pseudoobscura chromosomes bat only 16 (53%) did so with those of D. subobscura. Eight P1 clones gave more than one hybridization signal on D. pseudoobscura and/or D. subobscura chromosomes. All P1 clones and Dsuby hybridized on Muller's A element (X chromosome) of D. subobscura. In contrast, only 18 P1 clones and Dsuby hybridized on Muller's D element (XR chromosomal arm) of D. pseudoobscura; 4 additional P1 clones hybridized on Muller's D element (XR chromosomal arm) of this species and the remaining P1 clone gave on hybridization signal on each arm of the X chromosome. This latter clone may contain one breakpoint of a pericentric inversion that may account for the interchange of genetic material between Muller's A and D elements in D. pseudoobscura. In contrast to the rare interchange of genetic material between chromosomal elements, profound differences in the order and spacing of markers were detected between D. melanogaster, D. pseudoobscura and D. subobscura. In fact, the number of chromosomal segments delimited by identical markers and conserved between pairwise comparisons is small. Therefore, extensive reorganization within Muller's A element has been produced during the divergence of the three species. Rough estimates of the number of cytologically detectable inversions contributing to differentiation of Muller's A element were obtained. The most reliable of these estimates is that obtained from the D. pseudoobscura and D. melanogaster comparison since a greater number of markers have been mapped in both species. Tentatively, one inversion breakpoint about every 200 kb has been produced and fixed during the divergence of D. pseudoobscura and D. melanogaster.  相似文献   

12.
The drosophilid Zaprionus indianus due to its economical importance as an insect pest in Brazil deserves more investigation into its genetics. Its mitotic karyotype and a line-drawing map of its polytene chromosomes are already available. This paper presents a photomap of Z. indianus polytene chromosomes, which was used as the reference map for identification of sections marked by in situ hybridization with gene probes. Hybridization signals for Hsp70 and Hsr-omega were detected, respectively, in sections 34B and 32C of chromosome V of Z. indianus, which indicates its homology to the chromosomal arm 3R of Drosophila melanogaster and, therefore, to Muller's element E. The main signal for Hsp83 gene probe hybridization was in section 17C of Z. indianus chromosome III, suggesting its homology to arm 3L of D. melanogaster and to element D of Muller. The Ubi probe hybridized in sections 10C of chromosome II and 17A of chromosome III. Probably the 17A is the polyubiquitin locus, with homology to arm 3L of D. melanogaster and to the mullerian D element, as suggested also by Hsp83 gene location. The Br-C gene was mapped in section 1D, near the tip of the X chromosome, indicating its homology to the X chromosome of D. melanogaster and to mullerian element A. The Dpp gene probe hybridized mainly in the section 32A of chromosome V and, at lower frequencies to other sections, although no signal was observed as expected in the correspondent mullerian B element. This result led to the suggestion of a rearrangement including the Dpp locus in Z. indianus, the secondary signals possibly pointing to related genes of the TGF-beta family. In conclusion, the results indicate that chromosomes X, III, V of Z. indianus are respectively correspondents to elements A, D, and E of Muller. At least chromosome V of Z. indianus seems to share synteny with the 3R arm of D. melanogaster, as indicated by the relative positions of Hsp70 and Hsr-omega, although the Dpp gene indicates a disruption of synteny in its distal region.  相似文献   

13.
The genus Drosophila has long been used as a model of karyotype evolution, demonstrating change by paracentric inversion and occasional centric fusion of an ancestral karyotype of five rod-shaped and one "dot" chromosome. This study shows, by mapping D. melanogaster probes hybridized to polytene chromosomes of Zaprionus tuberculatus, that this ancestral pattern extends beyond the genus Drosophila. A formal polytene chromosome map of Z. tuberculatus is presented.  相似文献   

14.
Chromosomal inversions are the most common type of genome rearrangement in the genus Drosophila. Although the potential of transposable elements (TEs) for generating inversions has been repeatedly demonstrated in the laboratory, little is known on their role in the generation of natural inversions, which are those effectively contributing to the adaptation and/or evolution of species. We have cloned and sequenced the two breakpoints of the polymorphic inversion 2q7 of D. buzzatii. The sequence analysis of the breakpoint regions revealed the presence in the inverted chromosomes of large insertions, formed by complex assemblies of transposons, that are absent from the chromosomes without the inversion. Among the transposons inserted, the Foldback-like element Galileo, that was previously found responsible of the generation of the widespread inversion 2j of D. buzzatii, is present at both 2q7 breakpoints and is the most likely inducer of the inversion. A detailed study of the nucleotide and structural variation in the breakpoint regions of six chromosomal lines with the 2q7 inversion detected no nucleotide differences between them, which suggests a monophyletic and recent origin. In contrast, a remarkable degree of structural variation was observed in the same six chromosomal lines. It thus appears that the two breakpoints of the inverted chromosomes have become genetically unstable hotspots, as was previously found for the 2j inversion breakpoints. The possibility that this instability is caused by structural properties of Foldback elements is discussed.  相似文献   

15.
R1 is a non-long terminal repeat (non-LTR) retrotransposable element that inserts into a specific sequence of insect 28S ribosomal RNA genes. We have previously shown that this element has been maintained through vertical transmission in the melanogaster species subgroup of Drosophila. To address whether R1 elements have been vertically transmitted for longer periods of evolutionary time, the analysis has been extended to 11 other species from four species groups of the genus Drosophila (melanogaster, obscura, testecea, and repleta). All sequenced elements appeared functional on the basis of the preservation of their open-reading frames and consistently higher rate of substitution at synonymous sites relative to replacement sites. The phylogenetic relationships of the R1 elements from all species analyzed were congruent with the species phylogenies, suggesting that the R1 elements have been vertically transmitted since the inception of the Drosophila genus, an estimated 50-70 Mya. The stable maintenance of R1 through the germ line appears to be the major mechanism for the widespread distribution of these elements in Drosophila. In two species, D. neotestecea of the testecea group and D. takahashii of the melanogaster group, a second family of R1 elements was also present that differed in sequence by 46% and 31%, respectively, from the family that was congruent with the species phylogeny. These second families may represent occasional horizontal transfers or, alternatively, they could reflect the ability of R1 elements to diverge into new families within a species and evolve independently.   相似文献   

16.
The impact of the hobo transposable element in the global reorganization of the Drosophila melanogaster genome has been investigated in transgenic lines generated by the injection of hobo elements into the Hikone strain, which lacked them previously. Extensive surveys of transgenic lines followed for 250 generations have identified 13 inversions with hobo inserts at most breakpoints. One of these inversions is pericentric on chromosome 2. It has been maintained in the line where it was discovered and in several sublines at frequencies from 0.19 to 0.45, generating stable chromosomal polymorphisms, similar to cosmopolitan paracentric inversions in natural populations. Individuals homozygous for this inversion were viable and fertile, allowing the creation of a new homozygous strain.  相似文献   

17.
C. Segarra  M. Aguade 《Genetics》1992,130(3):513-521
Nine single copy regions located on the X chromosome have been mapped by in situ hybridization in six species of the obscura group of Drosophila. Three Palearctic species, D. subobscura, D. madeirensis and D. guanche, and three Nearctic species, D. pseudoobscura, D. persimilis and D. miranda, have been studied. Eight of the regions include known genes from D. melanogaster (Pgd, zeste, white, cut, vermilion, RNA polymerase II 215, forked and suppressor of forked) and the ninth region (lambda DsubF6) has not yet been characterized. In all six species, as in D. melanogaster, all probes hybridize to a single site. Established chromosomal arm homologies of Muller's element A are only partly supported by present results since two of the probes (Pgd and zeste) hybridize at the proximal end of the XR chromosomal arm in the three Nearctic species. In addition to the centric fusion of Muller's A (= XL) and D (= XR) elements, the metacentric X chromosome of the Nearctic species requires a pericentric inversion to account for this result. Previously proposed homologies of particular chromosomal regions of the A (= X) chromosome in the three species of the D. subobscura cluster and of the XL chromosomal arm in the three species of the D. pseudoobscura cluster are discussed in light of the present results. Location of the studied markers has changed drastically not only since the divergence between the melanogaster and obscura groups but also since the Palearctic and Nearctic species of the obscura group diverged.  相似文献   

18.
Length and position of breakpoints are characteristics of inversions that can be precisely determined on the polytene chromosomes of Drosophila species, and they provide crucial information about the processes that govern the origin and evolution of inversions. Eighty-six paracentric inversions described in the Drosophila buzzatii species complex and 18 inversions induced by introgressive hybridization in D. buzzatii were analyzed. In contrast to previous studies, inversion length and breakpoint distribution have been considered simultaneously. We conclude that: (1) inversion length is a selected trait; rare inversions are predominantly small while evolutionarily successful inversions, polymorphic and fixed, are predominantly intermediate in length; a nearly continuous variation in length, from small to medium sized, is found between less and more successful inversions; (2) there exists a significant negative correlation between length and number of polymorphic inversions per species which explains 39% of the inversion length variance; (3) natural selection on inversion length seems the main factor determining the relative position of breakpoints along the chromosomes; (4) the distribution of breakpoints according to their band location is non-random, with chromosomal segments that accumulate up to eight breakpoints.  相似文献   

19.
A photographic map of salivary gland polytene chromosomes of Drosophila madeirensis has been constructed showing homologies and differences with respect to the standard gene arrangement of D. subobscura. Only two paracentric inversions in the X chromosome and some slight minor dissimilarities of one or two bands in the autosomes differentiate the chromosomes of these species.  相似文献   

20.
There has been debate over the mechanisms that control the copy number of transposable elements in the genome of Drosophila melanogaster. Target sites in D. melanogaster populations are occupied at low frequencies, suggesting that there is some form of selection acting against transposable elements. Three main theories have been proposed to explain how selection acts against transposable elements: insertions of a copy of a transposable element are selected against; chromosomal rearrangements caused by ectopic exchange between element copies are selected against; or the process of transposition itself is selected against. The three theories give different predictions for the pattern of transposable element insertions in the chromosomes of D. melanogaster. We analysed the abundance of six LTR (long terminal repeat) retrotransposons on the X and fourth chromosomes of multiple strains of D. melanogaster, which we compare with the predictions of each theory. The data suggest that no one theory can account for the insertion patterns of all six retrotransposons. Comparing our results with earlier work using these transposable element families, we find a significant correlation between studies in the particular model of copy number regulation supported by the proportion of elements on the X for the different transposable element families. This suggests that different retrotransposon families are regulated by different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号