首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phagicin, which is an antiviral agent active against deoxyribonucleic acid (DNA) viruses such as vaccinia and herpes simplex, has been identified as a phage internal protein. It was found in infected Escherichia coli lysates, but could also be obtained by disruption of the purified infective particles after incubation with LiCl at 46 C for 15 min or by sonic treatment. After centrifugation at high speed, the antiviral activity was found in the DNA phase and could be separated by chromatography on Sephadex gels with 0.2 M phosphate buffer (pH 7.5) as the eluent. Phagicin present in lysates after removal of infective particles was nondialyzable and was bound to nucleic acids. It could be released during precipitation of nucleic acids by streptomycin sulfate, and in this form it could be easily dialyzed. The antiviral activity of phagicin was specific for herpes simplex and vaccinia viruses.  相似文献   

2.
Chemotherapy experiments carried out in vitro demonstrated that 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) was active against lymphocytic choriomeningitis virus and had an equivocal antiviral effect on Semliki Forest, herpes simplex, and vaccinia viruses. No antiviral effect was observed with BCNU against western equine encephalomyelitis, polio, and parainfluenza (HA-1) viruses. Activity of the drug was determined by inhibition of viral-induced cytopathogenic effect in KB or chick embryo cells and by reduction of virus titer in cell culture supernatant fluid. Maximal activity against the viruses was observed when drug and virus were incubated together for 30 min prior to addition to cells; essentially no activity could be demonstrated if BCNU and virus were added to cells with no prior incubation.  相似文献   

3.
Recombinant TK- vaccinia viruses containing the pBR322 sequence inserted in either orientation within the coding sequence of the viral thymidine kinase gene were constructed. They were characterized by genomic analysis, hybridization studies, reversion to wild-type virus by in vivo recombination, and rescue from their genomes of plasmids which contained all or parts of the pBR322 sequence. TK- cells were infected with one of these recombinant viruses and then transfected with pools of chimeric plasmids composed of a cloned herpes simplex virus thymidine kinase gene which contained upstream inserts of different vaccinia DNA fragments prepared by restriction or sonication. Recombination between homologous pBR322 sequences within infected cells generated selectable recombinant viruses in which expression of the herpes simplex virus thymidine kinase gene was promoted by the upstream vaccinia insert. These viruses were characterized by genomic analysis, hybridization, and in vivo or in vitro phosphorylation of (5-[125I]deoxycytidine as a specific assay for the expressed herpes simplex virus thymidine kinase. Vaccinia DNA inserts were isolated conveniently for transfer to bacteria by rescuing appropriate plasmids from the genome of recombinant viruses. The sequence of 100 nucleotides adjacent to the upstream region of the herpes simplex virus gene was determined in nine different inserts measuring 0.17 to 1.07 kilobase pairs.  相似文献   

4.
The metabolism and mode of action of the anti-herpes compound buciclovir [R)-9-(3,4-dihydroxybutyl)-guanine, BCV) has been studied in herpes simplex virus-infected and uninfected Vero cells. In uninfected cells, a low and constant concentration of intracellular BCV was found, while in herpes simplex virus-infected cells, an increasing concentration of BCV phosphates was found due to metabolic trapping. The major phosphorylation product was BCV triphosphate (BCVTP) which was 92% of the total amount of BCV phosphates. BCV phosphates were accumulated to the same extent in cells infected with either a herpes simplex virus type 1 or a herpes simplex virus type 2 strain while thymidine kinase-deficient mutants of herpes simplex virus type 1 were 10 times less efficient in accumulating BCV phosphates. In uninfected Vero cells, the concentration of the phosphorylated forms of BCV was less than 1% of that found in herpes simplex virus-infected cells. The BCVTP formed in herpes simplex virus-infected cells was highly stable, as 80% of the amount of BCVTP was still present even 17 h after removal of extracellular BCV. BCV was a good substrate for herpes simplex virus type 1- and type 2-induced thymidine kinases but not for the cellular cytosol or mitochondrial thymidine kinases. BCV monophosphate could be phosphorylated by cellular guanylate kinase to BCV diphosphate. BCVTP was a selective and competitive inhibitor to deoxyguanosine triphosphate of the purified herpes simplex virus type 1- and type 2-induced DNA polymerases. BCVTP could neither act as an alternative substrate in the herpes simplex virus type 2 or cellular DNA polymerase reactions, nor could [3H]BCV monophosphate be detected in DNA formed by herpes simplex virus type 2 DNA polymerase, or be detected in nucleic acids extracted from herpes simplex virus type 1-infected cells. These data indicate that BCVTP may inhibit the herpes simplex virus-induced DNA polymerase without being incorporated into DNA.  相似文献   

5.
Herpes simplex and vaccinia viruses and adenovirus types 1, 2, 5, and 7 were tested by plaque suppression methods for sensitivity to halogenated deoxyuridines (5-iodo-, 5-bromo-, 5-chloro-, and 5-fluoro-), cytosine arabinoside, isatin-beta-thiosemicarbazone, and N-methylisatin-beta-thiosemicarbazone. After incubation for 12 days in HeLa cell cultures, vaccinia virus plaques were still readily suppressed by deoxyribonucleic acid (DNA) inhibitors and thiosemicarbazones. Herpes simplex virus plaques were likewise suppressed by at least three DNA inhibitors. Adenovirus plaques were not suppressed by DNA inhibitors or thiosemicarbazones. 5-Fluoro-2'-deoxyuridine could not be shown to have any antiviral activity, but it did produce a substantial lethal action on the cells.  相似文献   

6.
Comparison of antiviral and antitumor activity of activated macrophages.   总被引:5,自引:0,他引:5  
The antiviral and antitumor activity in vitro of normal, stimulated, vaccinia virus “immune”, and activated peritoneal macrophages were compared. Activated (pyran or corynebacteria induced) PEC exhibited both antitumor and antiviral activity. Stimulated (thioglyocollate) and vaccinia virus “immune” PEC inhibited virus growth but did not possess antitumor activity. Normal (unstimulated) PEC were relatively ineffective in either activity. The antiviral activity was nonspecific, being expressed against herpes simplex and EMC viruses in addition to vaccinia. Although a possible role for interferon was suggested by the lack of activity of mouse PEC on vaccinia virus growth in heterologous FLK cells, definitive proof was not obtained. The activity was most pronounced against multiple cycles of viral infection initiated at a low multiplicity of infection. Single cycle virus growth was not affected, suggesting that the major inhibition was on subsequent cycles of virus growth.  相似文献   

7.
New nitrogen-containing derivatives of betulinic and betulonic acids, hydrazides and N"-benzalhydrazides, were synthesized. Their antiviral activities toward viruses of influenza A virus, herpes simplex type I virus, enterovirus ECHO6, and HIV-1 were studied in vitro. Betulinic acid 3-oxime was found to have the highest activity against the influenza virus. Betulonic acid, betulinic acid 4-chlorobenzalhydrazide, betulonic acid 3-oxime benzalhydrazide, and betulinic acid hydrazide inhibited the replication of herpes simplex type I virus. Betulinic acid hydrazide also showed antiviral activity toward HIV-1. All the derivatives of betulinic acid under study displayed a low antiviral activity toward enterovirus ECHO6.  相似文献   

8.
2'-Nor-cGMP: a seco-cyclic nucleotide with powerful anti-DNA-viral activity   总被引:8,自引:0,他引:8  
As part of our study of antiherpetic acyclonucleosides, we synthesized a cyclic GMP analog, 9-[(2-hydroxy-1,3,2-dioxaphosphorinan-5-yl)oxymethyl]guanine P-oxide, sodium salt (2'-nor-cGMP), and discovered its potent and broad spectrum anti-DNA-viral activities. 2'-Nor-cGMP inhibits the replication of many DNA viruses, including herpes simplex virus, human cytomegalovirus, vaccinia, SV40, and adenovirus, but does not inhibit RNA viruses. In plaque reduction studies this potent antiviral agent is also approximately 10-fold more potent than 9-(1,3-dihydroxy-2-propoxymethyl)guanine (2'NDG) against varicella-zoster virus and inhibits cell transformation by bovine papilloma virus. Unlike 2'NDG, the potent activity of 2'-nor-cGMP against herpes virus is not dependent upon the action of virus-specified thymidine kinase. Intercellular metabolism of 2'-nor-cGMP produced small amounts of 2'NDG triphosphate which were insufficient to account for the antiviral activity observed, implying that this potent anti-DNA-viral agent operates by a mechanism different from that of known acyclonucleosides.  相似文献   

9.
Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity, which depurinate large ribosomal RNA and arrest protein synthesis. RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins, isolated from plants, are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and herpes simplex virus (HSV). Most of the research work related to RIPs has been focused on antiviral activity agains...  相似文献   

10.
SAMHD1 is a newly identified anti-HIV host factor that has a dNTP triphosphohydrolase activity and depletes intracellular dNTP pools in non-dividing myeloid cells. Since DNA viruses utilize cellular dNTPs, we investigated whether SAMHD1 limits the replication of DNA viruses in non-dividing myeloid target cells. Indeed, two double stranded DNA viruses, vaccinia and herpes simplex virus type 1, are subject to SAMHD1 restriction in non-dividing target cells in a dNTP dependent manner. Using a thymidine kinase deficient strain of vaccinia virus, we demonstrate a greater restriction of viral replication in non-dividing cells expressing SAMHD1. Therefore, this study suggests that SAMHD1 is a potential innate anti-viral player that suppresses the replication of a wide range of DNA viruses, as well as retroviruses, which infect non-dividing myeloid cells.  相似文献   

11.
The efficient replication of large DNA viruses requires dNTPs supplied by a viral ribonucleotide reductase. Viral ribonucleotide reductase is an early gene product of both vaccinia and herpes simplex virus. For productive infection, the apoprotein must scavenge iron from the endogenous, labile iron pool(s). The membrane-permeant, intracellular Fe(2+) chelator, 2,2'-bipyridine (bipyridyl, BIP), is known to sequester iron from this pool. We show here that BIP strongly inhibits the replication of both vaccinia and herpes simplex virus, type 1. In a standard plaque assay, 50 microm BIP caused a 50% reduction in plaque-forming units with either virus. Strong inhibition was observed only when BIP was added within 3 h post-infection. This time dependence was observed also in regards to inhibition of viral late protein and DNA synthesis by BIP. BIP did not inhibit the activity of vaccinia ribonucleotide reductase (RR), its synthesis, nor its stability indicating that BIP blocked the activation of the apoprotein. In parallel with its inhibition of vaccinia RR activation, BIP treatment increased the RNA binding activity of the endogenous iron-response protein, IRP1, by 1.9-fold. The data indicate that the diiron prosthetic group in vaccinia RR is assembled from iron taken from the BIP-accessible, labile iron pool that is sampled also by ferritin and the iron-regulated protein found in the cytosol of mammalian cells.  相似文献   

12.
Alkoxyalkyl esters of cidofovir (CDV) are orally active agents which inhibit the replication of a variety of double stranded DNA (dsDNA) viruses including variola, vaccinia, ectromelia, herpes simplex virus, cytomegalovirus, adenovirus and others. One of these compounds, hexadecyloxypropyl-CDV (HDP-CDV, CMX001) is in clinical development for prevention and treatment of poxvirus infection, vaccination complications, and for infections caused by cytomegalovirus, adenovirus, herpesviruses and other dsDNA viruses. This class of lipid analogs is potentially prone to undergo omega oxidation of the alkyl moiety which can lead to a short chain carboxylic acid lacking antiviral activity. To address this issue, we synthesized a series of alkoxyalkyl or alkyl glycerol esters of CDV and (S)-HPMPA having modifications in the structure of the alkyl residue. Antiviral activity was assessed in cells infected with vaccinia, cowpox or ectromelia viruses. Metabolic stability was determined in S9 membrane fractions from rat, guinea pig, monkey and human liver. All compounds had substantial antiviral activity in cells infected with vaccinia, cowpox or ectromelia. Metabolic stability was lowest in monkey liver S9 incubations where rapid disappearance of HDP-CDV and HDP-(S)-HPMPA was noted. Metabolic stability in monkey preparations increased substantially when a ω-1 methyl group (15-methyl-HDP-CDV) or a terminal cyclopropyl residue (14-cyclopropyl-tetradecyloxypropyl-CDV) was present in the alkyl chain. The most stable compound was 1-O-octadecyl-2-O-benzyl-sn-glycero-3-CDV (ODBG-CDV) which was not metabolized extensively by monkey liver S9. In rat, guinea pig or human liver S9 incubations, most of the modified antiviral compounds were considerably more stable.  相似文献   

13.
Here we report on the results obtained from an antiviral screening, including herpes simplex virus, vaccinia virus, vesicular stomatitis virus, Coxsackie B4 virus or respiratory syncytial virus, parainfluenza-3 virus, reovirus-1 and Punta Toro virus, of three 2-hydroxy-3-methoxyphenyl acylhydrazone compounds in three cell lines (i.e. human embryonic lung fibroblast cells, human cervix carcinoma cells, and African Green monkey kidney cells). Interesting antiviral EC50 values are obtained against herpes simplex virus-1 and vaccinia virus. The biological activity of acylhydrazones is often attributed to their metal coordinating abilities, so potentiometric and microcalorimetric studies are here discussed to unravel the behavior of the three 2-hydroxy-3-methoxyphenyl compounds in solution. It is worth of note that the acylhydrazone with the higher affinity for Cu(II) ions shows the best antiviral activity against herpes simplex and vaccinia virus (EC50 ~ 1.5 µM, minimal cytotoxic concentration = 60 µM, selectivity index = 40).  相似文献   

14.
15.
The virucidal effect of peppermint oil, the essential oil of Mentha piperita, against herpes simplex virus was examined. The inhibitory activity against herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) was tested in vitro on RC-37 cells using a plaque reduction assay. The 50% inhibitory concentration (IC50) of peppermint oil for herpes simplex virus plaque formation was determined at 0.002% and 0.0008% for HSV-1 and HSV-2, respectively. Peppermint oil exhibited high levels of virucidal activity against HSV-1 and HSV-2 in viral suspension tests. At noncytotoxic concentrations of the oil, plaque formation was significantly reduced by 82% and 92% for HSV-1 and HSV-2, respectively. Higher concentrations of peppermint oil reduced viral titers of both herpesviruses by more than 90%. A clearly time-dependent activity could be demonstrated, after 3 h of incubation of herpes simplex virus with peppermint oil an antiviral activity of about 99% could be demonstrated. In order to determine the mode of antiviral action of the essential oil, peppermint oil was added at different times to the cells or viruses during infection. Both herpesviruses were significantly inhibited when herpes simplex virus was pretreated with the essential oil prior to adsorption. These results indicate that peppermint oil affected the virus before adsorption, but not after penetration into the host cell. Thus this essential oil is capable to exert a direct virucidal effect on HSV. Peppermint oil is also active against an acyclovir resistant strain of HSV-1 (HSV-1-ACV(res)), plaque formation was significantly reduced by 99%. Considering the lipophilic nature of the oil which enables it to penetrate the skin, peppermint oil might be suitable for topical therapeutic use as virucidal agent in recurrent herpes infection.  相似文献   

16.
Betulin and betulinic acid have been modified at the C-3 and C-28 positions and the antiviral activity of derivatives has been evaluated in vitro. It was found that simple modifications of the parent structure of lupane triterpenes produced highly effective agents against influenza A and herpes simplex type 1 viruses.  相似文献   

17.
(-)-5'-noraristeromycin (1) has shown antiviral activity towards, particularly cytomegalovirus, vaccinia virus and measles while its (+)-enantiomer (2) is effective towards hepatitis B virus. To determine if the antiviral characteristics of 1 and 2 extended to the guanine analogues (3 and 4), these enantiomers were prepared and evaluated against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), cytomegalovirus (CMV), varicella zoster virus (VZV), Epstein-Barr virus (EBV), human herpes virus type 6 (HHV-6), human herpes virus type 8 (HHV-8), vaccinia virus (VV), cowpox virus (CV), vesicular stomatitis virus (VSV), respiratory syncytial virus (RSV), hepatitis B virus (HBV), and human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2). The only activity found for 3 was for Epstein-Barr virus in VCA Elisa (EC50 0.78 microg/mL), immunofluorescence assay for VCA or gp 350/250 (1.8-4.0 microg/mL) and DNA hybridization (EC50 0.82 microg/mL) assays with no accompanying toxicity seen in the host Daudi cells. No activity was noted for 4.  相似文献   

18.
With the agar diffusion test and BS-C-1 cells, mycophenolic acid was found to give a straight-line dose-response activity in inhibiting the cytopathic effects of vaccinia, herpes simplex, and measles viruses. Plaque tests have shown 100% reduction of virus plaques by mycophenolic acid over drug ranges of 10 to 50 mug/ml and virus input as high as 6,000 plaque-forming units (PFU) per flask. Back titration studies with measles virus inhibited by mycophenolic acid have indicated that extracellular virus titers were reduced by approximately 3 logs(10) and total virus was reduced by 1 log(10). The agar diffusion test system lends itself readily to drug reversal studies. Mycophenolic acid incorporated into agar at 10 mug/ml gave 100% protection to virus-infected cells. Filter paper discs impregnated with selected chemical agents at concentrations of 1,000 mug/ml (20 mug per filter paper disc) were placed on the agar surface. Reversal of the antiviral activity of mycophenolic acid was indicated by virus breakthrough in those cells in close proximity to the filter paper disc. Chemicals showing the best reversal of the antiviral activity of mycophenolic acid were guanine, guanosine, guanylic acid, deoxyguanylic acid, and 2,6-diaminopurine. The reversal of antiviral activity was confirmed by titrations of virus produced with various amounts of both mycophenolic acid and guanine present and by isotope tracer methods with uptakes of labeled uridine, guanine, leucine, and thymidine in treated and nontreated, infected and noninfected cells as parameters. All antiviral effects of mycophenolic acid at 10 mug/ml could be reversed to the range shown by untreated controls by the addition of 10 mug/ml of those chemicals exhibiting reversal activity.  相似文献   

19.
Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity, which depurinate large ribosomal RNA and arrest protein synthesis. RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins, isolated from plants, are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and herpes simplex virus (HSV). Most of the research work related to RIPs has been focused on antiviral activity against HIV; however, the exact mechanism of antiviral activity is still not clear. The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome, leading to inhibition of viral protein translation and host cell death. Enzymatic activity of RIPs is not limited to depurination of the large rRNA, in addition they can depurinate viral DNA as well as RNA. Recently, Phase I/II clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease. The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.  相似文献   

20.
A reproducible test system requiring small amounts of test compound was developed for evaluating antiviral and interferon-inducing activity. In the antiviral experiments, KB cells were grown in disposable polystyrene microplates covered with a standard domestic plastic wrap. Viruses used in the system were types 1 and 2 herpes simplex virus, vaccinia virus, type 3 adenovirus, myxoma virus, pseudorabies virus, type 3 parainfluenza virus, types 1A and 13 rhinovirus, vesicular stomatitis virus, coxsackievirus B, and type 2 poliovirus. Inhibition of viral cytopathogenic effect was the primary criterion of evaluation of antiviral activity. Reduction in cell and supernatant fluid virus titers was used as a secondary means of evaluation. The microplate system was adaptable for determining prophylactic, therapeutic, and inactivating effects against viruses. Mouse L-929 cells were used for the interferon induction studies, with vesicular stomatitis virus utilized as the indicator of interferon activity. Known active compounds evaluated in this microplate system had activity similar to that seen in macro in vitro systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号