首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Developmental and functional analysis of Jonah gene expression   总被引:1,自引:0,他引:1  
The Jonah genes are expressed twice in development: Jonah RNA is detected during all larval stages, disappears at the end of the third larval instar, and then reappears shortly after eclosion, in the adult midgut. Construction and analysis of Jonah cDNA clones reveals that multiple Jonah genes are transcribed; cDNA clones deriving from at least four different clusters of Jonah genes have been identified. In at least one case, multiple genes in a cluster are transcribed, and one cluster is found to be transcribed both in larvae and adults. Evidence that different Jonah genes are under different control with respect to both spatial and temporal patterns of expression has been provided. Jonah RNA encodes a 28-kDa translation product or products for which we consider a possible function. Jonah RNA of constant length is found to be conserved in all strains of Drosophila melanogaster examined, Jonah genes are found at a minimum of three common chromosomal sites in all of seven D. melanogaster strains examined, and multiple Jonah genes are found in other Drosophila species.  相似文献   

3.
4.
The oocytes of amphibians and teleosts begin to accumulate 5S RNA several months before other components of the ribosomes become available. Two types of genes coding for 5S RNA are active during oogenesis of these animals. One type of genes is expressed only in oocytes. The other type is expressed in both oocytes and somatic cells. In this paper, we show that the oocytes of Xenopus laevis do not accumulate 5S RNA of somatic type. We conclude that the products of the two types of genes behave differently during oogenesis. One product is stored by the oocytes, whereas the other is not. The heterogeneity of 5S genes in Xenopus laevis might have arisen because oocytes and somatic cells needed different kinds of 5S RNA. These needs are met by molecules having different primary structures, different conformations, and different metabolic stabilities in vivo. We do not understand how these properties are related to one another.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
There are about 50 copies of U1 RNA genes/pseudogenes in the rat genome. To date, we have isolated so far 25 phage clones carrying a U1 RNA gene/pseudogene from two rat genomic libraries. The 12 clones were selected by hybridization with the U1 RNA coding region under a stringent condition, and were mapped and sequenced. Here, we report three types of U1 RNA genes with different flanking sequences, all of which were shown to be induced to express in vivo by transfection with their polylinker-inserted maxi U1 RNA genes into cultured rat cells. Although these three classes of U1 RNA genes have few homologous flanking sequences, they provide both upstream and downstream of the genes two conserved blocks, which may possibly play an important role in U1 RNA expression.  相似文献   

13.
14.
15.
We cloned and characterized three genes from Aspergillus nidulans, designated brlA, abaA, and wetA, whose activities are required to complete different stages of conidiophore development. Inactivation of these genes causes major abnormalities in conidiophore morphology and prevents expression of many unrelated, developmentally regulated genes, without affecting the expression of nonregulated genes. The three genes code for poly(A)+ RNAs that begin to accumulate at different times during conidiation. The brlA- and abaA-encoded RNAs accumulate specifically in cells of the conidiophore. The wetA-encoded RNA accumulates in mature conidia. Inactivation of the brlA gene prevents expression of the abaA and wetA genes, whereas inactivation of the abaA gene prevents expression of the wetA gene. Our results confirm genetic predictions as to the temporal and spatial patterns of expression of these genes and demonstrate that these patterns are specified at the level of RNA accumulation.  相似文献   

16.
Iu N Zograf 《Genetika》1986,22(11):2583-2592
Recent data on regulation of gene activity in bacteria by substitution of RNA polymerase sigma subunits are reviewed. The htpR gene which controls the switch-on of the Escherichia coli heat-shock protein synthesis codes for sigma 32 subunit. sigma 32-containing RNA polymerase transcribes the heat-shock genes in vitro from specific promoters of no use for RNA polymerase containing the major sigma 70 subunit. Several minor sigma subunits have been found in Bacillus subtilis vegetative cells, in addition to the major sigma 55 subunit, differing in the specificity of promoter recognition. Many B. subtilis genes are controlled by tandemly located promoters recognized by RNA polymerases carrying different sigma subunits. sigma 29 subunit is encoded by spoIIG gene and is probably involved in the regulation of sporulation. Specific sigma subunits for transcribing "middle" or "late" genes are encoded by a number of phages.  相似文献   

17.
18.
19.
20.
吕占军  王秀芳  翟羽  宋淑霞 《遗传》2003,25(1):30-36
同样的基因在不同的分化细胞中表达不同,基因的选择性表达问题涉及分化和衰老的本质。转录基因对DNaseⅠ(DNA酶Ⅰ)消化敏感,本文研究了RNA对小鼠重组染色质白蛋白基因DNaseⅠ消化敏感性的影响。分离BALB/c小鼠脑细胞核,加入终浓度为2mol/L的NaCl破坏核小体结构,加入不同量、不同来源的RNA,装透析袋,逐渐降低离子强度进行染色质重组。重组染色质中加入DNaseⅠ消化DNA,PCR扩增白蛋白基因的外显子1到外显子2约1200bp区段,PAGE电泳后,用银染色观察不同来源RNA促进DNaseⅠ对白蛋白基因的消化作用。不同组织来源(肝、肺、肾、脑)RNA对小鼠重组染色质中白蛋白基因DNaseⅠ消化敏感性均有促进作用,其中肝和肺RNA促进消化作用较强;酵母tRNA无显著促进消化作用;消化促进作用与RNA剂量有关。RNA能增加DNaseⅠ对白蛋白基因的消化敏感性且有组织(细胞)来源特异性。又委托丹麦Chemical R D 实验室合成2条与白蛋白基因互补的各23核苷酸的RNA,用其进行重组试验。结果表明,重组混合物中含有低至0.2μg/mL的RNA,即可以发挥显著的DNase I消化促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号