首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic demographic characteristics and immunogenetic markers (blood groups ABO, Rhesus, MNSs, P, Duffy, Kidd, and Kell) have been studied in a group of 132 Russian cosmonauts and test subjects (CTSG). Analysis of pedigrees has shown a high exogamy in the preceding generations: almost half of the subjects have mixed ethnic background. According to the results of genetic demographic analysis, a sample from the Moscow population was used as control group (CG). Comparison between the CTSG and CG has demonstrated significant differences in genotype frequencies for several blood group systems. The CTSG is characterized by a decreased proportion of rare interlocus genotypic combinations and an increased average heterozygosity. Analysis of the distributions of individual heterozygosity for loci with codominant expression of alleles has shown that the carriers of highly heterozygous genotypes are more frequent in the CTSG. Taking into account that the CTSG has been thoroughly selected from the general population, it is concluded that heterozygosity is related to successful adaptation to a space flight.  相似文献   

2.
Genetic diversity is fundamental to maintaining the long‐term viability of populations, yet reduced genetic variation is often associated with small, isolated populations. To examine the relationship between demography and genetic variation, variation at hypervariable loci (e.g., microsatellite DNA loci) is often measured. However, these loci are selectively neutral (or near neutral) and may not accurately reflect genomewide variation. Variation at functional trait loci, such as the major histocompatibility complex (MHC), can provide a better assessment of adaptive genetic variation in fragmented populations. We compared patterns of microsatellite and MHC variation across three Eastern Massasauga (Sistrurus catenatus) populations representing a gradient of demographic histories to assess the relative roles of natural selection and genetic drift. Using 454 deep amplicon sequencing, we identified 24 putatively functional MHC IIB exon 2 alleles belonging to a minimum of six loci. Analysis of synonymous and nonsynonymous substitution rates provided evidence of historical positive selection at the nucleotide level, and Tajima's D provided support for balancing selection in each population. As predicted, estimates of microsatellite allelic richness, observed, heterozygosity, and expected heterozygosity varied among populations in a pattern qualitatively consistent with demographic history and abundance. While MHC allelic richness at the population and individual levels revealed similar trends, MHC nucleotide diversity was unexpectedly high in the smallest population. Overall, these results suggest that genetic variation in the Eastern Massasauga populations in Illinois has been shaped by multiple evolutionary mechanisms. Thus, conservation efforts should consider both neutral and functional genetic variation when managing captive and wild Eastern Massasauga populations.  相似文献   

3.
In pairwise comparisons of gene frequency data from the three major races of man, the single locus measures of the heterozygosity within and the genetic distance between races are shown to be strongly correlated across the loci coding for red cell proteins and enzymes. The intercept of the regression line of genetic distance on heterozygosity in protein enzyme loci is statistically insignificant. These findings suggest that the genetic variability at the enzyme and protein loci in man is probably maintained by a balance of mutation and random genetic drift. At the blood group loci, however, the observed relationship between genetic distance and heterozygosity does not follow the expectation of the neutral mutation hypothesis. These observations are discussed in terms of the changes in probability of identical monomorphism in two populations during the process of gene differentiation.  相似文献   

4.
Linking temporal variations of genetic diversity, including allelic richness and heterozygosity, and spatio-temporal fluctuations in population abundance has emerged as an important tool for understanding demographic and evolutionary processes in natural populations. This so-called genetic monitoring was conducted across 12 consecutive years (1996-2007) at three sites for the feral cat, introduced onto the Kerguelen archipelago fifty years ago. Temporal changes in allelic richness and heterozygosity at 18 microsatellite DNA loci were compared with temporal changes in the adult population abundance index, obtained by typical demographic monitoring. No association was found at the island spatial scale, but we observed an association between genetic diversity and adult population indices from year to year within each study site. More particularly, the magnitude of successive increases or decreases in the adult population abundance index appeared to be the major factor linking the trajectories of genetic diversity and adult population abundance indices. Natal dispersal and/or local recruitment, both facilitated by high juvenile survival when the adult population size is small, is proposed as the major demographic processes contributing to such an observed pattern. Finally, we suggested avoiding the use of the harmonic mean as an estimator of long-term population size to study the relationships between demographic fluctuations and heterozygosity in populations characterized by strong multiannual density fluctuations.  相似文献   

5.
Egg production and individual genetic diversity in lesser kestrels   总被引:3,自引:2,他引:1  
Fecundity is an important component of individual fitness and has major consequences on population dynamics. Despite this, the influence of individual genetic variability on egg production traits is poorly known. Here, we use two microsatellite-based measures, homozygosity by loci and internal relatedness, to analyse the influence of female genotypic variation at 11 highly variable microsatellite loci on both clutch size and egg volume in a wild population of lesser kestrels (Falco naumanni). Genetic diversity was associated with clutch size, with more heterozygous females laying larger clutches, and this effect was statistically independent of other nongenetic variables such as female age and laying date, which were also associated with fecundity in this species. However, egg volume was not affected by female heterozygosity, confirming previous studies from pedigree-based breeding experiments which suggest that this trait is scarcely subjected to inbreeding depression. Finally, we explored whether the association between heterozygosity and clutch size was due to a genome-wide effect (general effect) or to single locus heterozygosity (local effect). Two loci showed a stronger influence but the correlation was not fully explained by these two loci alone, suggesting that a main general effect underlies the association observed. Overall, our results underscore the importance of individual genetic variation for egg production in wild bird populations, a fact that could have important implications for conservation research and provides insights into the study of clutch size evolution and genetic variability maintenance in natural populations.  相似文献   

6.
Polynesians have lower heterozygosities at minisatellite VNTR (Variable Number of Tandem Repeat) loci than have Melanesians; this has been taken as evidence of population-size bottlenecks during the colonisation of Polynesia. We have analysed the allelic distribution of several minisatellite loci in the population of Rapa, a Polynesian island that is known to have undergone a demographic reduction of approximately 95% since first contact with European explorers 200 years ago, leaving a surviving population of 120. We found that the minisatellite diversity of this population does not differ significantly from that of other Polynesian populations, and appears consistent with the neutral expectation of diversity assuming the infinite alleles model. This suggests that the demographic crisis that Rapa underwent did not perturb the allele distribution to the extent that the tests used here could detect. Thus we cannot say that a demographic change of this magnitude constitutes a genetic bottleneck detectable at these loci. The reduced diversity seen in Polynesia must therefore be explained either by more severe bottlenecks as might be expected during colonisation, or else by other causes.  相似文献   

7.
It has been long recognized that population demographic expansions lead to distinctive features in the molecular diversity of populations. However, recent simulation results have suggested that a distinction could be made between a pure demographic expansion in an unsubdivided population, and a range expansion in a subdivided population, both leading to a large increase in the total number of the individuals. In order to better characterize the effect of a range expansion, I introduce a simple model of instantaneous expansion under an infinite-island model, under which I derive the distribution of the number of mutation differences between pairs of genes (the mismatch distribution), the heterozygosity, the average number of pairwise difference, and the fixation index F(ST). These derivations are checked against simulations, and are shown to lead to results qualitatively similar to those one would obtain after a range expansion in a 2-dimensional stepping-stone model. I then apply these results to estimate immigration rates in hunter-gather and post-Neolithic human populations from patterns of mitochondrial (mtDNA) diversity. Potential problems with this estimation procedure are also discussed.  相似文献   

8.
Allozyme variation in a population of the common mussel Mytilus edulis in Mumbles, South Wales, has been studied by starch gel electrophoresis. On the basis of data obtained for 34 loci, we estimate the proportion of loci polymorphic to be 30%. Using only the 29 loci for which individual genotypes can be accurately typed, the average heterozygosity is estimated to be 9.5 +/- 3.6%. The calculated expected average heterozygosity based on Hardy-Weinberg expectations is identical with the observed value. Allele frequency data at six polymorphic loci are given for several other British populations. There is no significant geographic heterogeneity. The results are discussed in relation to genetic adaptive strategies and are shown to be inconsistent with the predictions of the neutral hypothesis.  相似文献   

9.
Many studies use genetic markers to explore population structure and variability within species. However, only a minority use more than one type of marker and, despite increasing evidence of a link between heterozygosity and individual fitness, few ask whether diversity correlates with population trajectory. To address these issues, we analysed data from the Steller's sea lion, Eumetiopias jubatus , where three stocks are distributed over a vast geographical range and where both genetic samples and detailed demographic data have been collected from many diverse breeding colonies. To previously published mitochondrial DNA (mtDNA) and microsatellite data sets, we have added new data for amplified fragment length polymorphism (AFLP) markers, comprising 238 loci scored in 285 sea lions sampled from 23 natal rookeries. Genotypic diversity was low relative to most vertebrates, with only 37 loci (15.5%) being polymorphic. Moreover, contrasting geographical patterns of genetic diversity were found at the three markers, with Nei's gene diversity tending to be higher for AFLPs and microsatellites in rookeries of the western and Asian stocks, while the highest mtDNA values were found in the eastern stock. Overall, and despite strongly contrasting demographic histories, after applying phylogenetic correction we found little correlation between genetic diversity and either colony size or demography. In contrast, we were able to show a highly significant positive relationship between AFLP diversity and current population size across a range of pinniped species, even though equivalent analyses did not reveal significant trends for either microsatellites or mtDNA.  相似文献   

10.
Hotspots of intraspecific diversity have been observed in most species, often within areas of putative Pleistocene refugia. They have thus mostly been viewed as the outcome of prolonged stability of large populations within the refugia. However, recent evidence has suggested that several other microevolutionary processes could also be involved in their formation. Here, we investigate the contribution of these processes to current range-wide patterns of genetic diversity in the Italian endemic mole Talpa romana, using both nuclear (30 allozyme loci) and mitochondrial markers (cytochrome b sequences). Southern populations of this species showed an allozyme variation that is amongst the highest observed in small mammals (most populations had an expected heterozygosity of 0.10 or above), which was particularly unexpected for a subterranean species. Population genetic, phylogeographic and historical demographic analyses indicated that T. romana populations repeatedly underwent allopatric differentiations followed by secondary admixture within the refugial range in southern Italy. A prolonged demographic stability was reliably inferred from the mitochondrial DNA data only for a population group located north and east of the Calabrian peninsula, showing comparatively lower levels of allozyme variability, and lacking evidence of secondary admixture with other groups. Thus, our results point to the admixture between differentiated lineages as the main cause of the higher levels of diversity of refugial populations. When compared with the Pleistocene evolutionary history recently inferred for species from both the same and other geographic regions, these results suggest the need for a reappraisal of the role of gene exchange in the formation of intraspecific hotspots of genetic diversity.  相似文献   

11.
To investigate the population genetic characteristics of VNTR polymorphisms in human populations, we have studied the allele frequency distribution of six VNTR loci (D1S57, RB1, D1S77, D1S61, alpha-globin 5'HVR, D1S76) in three well-defined populations (Kachari of Northeast India; Dogrib Indian of Canada; and New Guinea Highlander of Papua New Guinea). Even though the number of alleles sampled is limited, 48 to 92 alleles per locus per population, significant variation is noticed in the number of alleles per locus for all the populations. Using alternate summary measures, we have observed that genotype distributions at the six VNTR loci apparently conform to their respective Hardy-Weinberg predictions. Multilocus genotype profiles of the individuals in each of the three populations suggest that the VNTR alleles are independently segregating with the exception of the two linked loci D1S76 and D1S77. Lack of fit of all VNTR loci to one particular model of mutational change, either the Infinite Allele Model or the Stepwise Mutation Model, suggests more than one mechanism for production of new VNTR alleles. This study also indicates that increased heterozygosity at VNTR loci in comparison to protein and blood group loci may lead to more accurate estimates of genetic distance.  相似文献   

12.
Variation of heterozygosity at 11 loci for blood group systems (erythrocyte antigens), occurred during 14 years in the domestic pig population of Kemerovskaya breed is described. The two estimates computed for the population examined were represented by expected population heterozygosity, as a measure resistant to stochastic fluctuations, and individual heterozygosity, as a measure with the features of a quantitative trait. Our results showed that relative fitness of genotypic classes, formed by the alleles of erythrocyte antigen loci, was different. It was demonstrated that the population examined carried the alleles responsible for fitness decrease, as well as the alleles with stable and unstable equilibrium points (with increased and decreased relative fitness of heterozygotes). Suggestions based on these results, could be applied not only to the population examined, but also to the domesticated form of Sus scrofa as a whole.  相似文献   

13.
Moose, Alces alces, occur naturally throughout most of Canada but successful introductions of known numbers of animals have been made to the islands of Newfoundland and Cape Breton. Five microsatellite loci were used to investigate the population genetic structure and any change in genetic variability due to founder events of moose in Canada. Comparisons of allele frequencies for moose from 11 regions of the country suggested that there are at least seven genetically distinct populations (P < 0.05) in North America, namely Alberta, eastern Ontario, New Brunswick, Cape Breton, Labrador, western Newfoundland, and the Avalon Peninsula of Newfoundland. The average population heterozygosity was approximately 33% (range from 22 to 41%). UPGMA analysis of Nei's genetic distances produced phenograms similar to what would be expected when geographical location and population history are considered. The loss of heterozygosity due to a single founder event (n = 3; two introductions and a natural colonization) ranged from 14 to 30%, and the cumulative loss of heterozygosity due to two successive founder events (an introduction followed by a natural colonization) was 46%. In these examples loss of genetic variability has not been associated with any known phenotypic deviances, suggesting that populations may be established from a small number of founders. However, the viability of these founded populations over evolutionary timescales cannot be determined and is highly dependent upon chance.  相似文献   

14.
Evolutionary and conservation biologists often use molecular markers to evaluate whether populations have experienced demographic bottlenecks that resulted in a loss of genetic variation. We evaluated the utility of microsatellites for detection of recent, severe bottlenecks and compared the amounts of genetic diversity lost in bottlenecks of different sizes. In experimental mesocosms, we established replicate populations by releasing 1, 2, 4 or 8 pairs of the western mosquitofish, Gambusia affinis (Poeciliidae). Using eight polymorphic microsatellite loci, we quantified seven indices of genetic diversity or change that have been used to assess the effects of demographic bottlenecks on populations. We compared indices for the experimentally bottlenecked populations to those for the source population and examined differences between populations established with different numbers of founders. Direct count heterozygosity and the proportion of polymorphic loci were not very sensitive to genetic changes that resulted from the experimental bottlenecks. Heterozygosity excess and expected heterozygosity were useful to varying degrees in the detection of bottlenecks. Allelic diversity and temporal variance in allele frequencies were most sensitive to genetic changes that resulted from the bottlenecks, and the temporal variance method was slightly more correlated with bottleneck size than was allelic diversity. Based on comparisons to a previous study with allozymes, heterozygosity, temporal variance in allele frequencies and allelic diversity, but not proportion of polymorphic loci, appear to be more sensitive to demographic bottlenecks when quantified using microsatellites. We found that analysis of eight highly polymorphic loci was sufficient to detect a recent demographic bottleneck and to obtain an estimate of the magnitude of bottleneck severity.  相似文献   

15.
Rambouillet sheep originating from Spanish Merino have been maintained in France as a small and closed flock since their importation. After 190 years of independent evolution, the flock has markedly differentiated from its Spanish parental population. The observed differences between them were characterized by the fixation in Rambouillet of the Mb and F30 alleles, which occurred in Spanish Merino with frequencies of 0.90 and 0.80 respectively (at two distinct blood group loci M and F30) and by the absence in Rambouillet of other alleles or phenogroups (at the Tf and the A, B, C blood group loci) which were observed in Spanish Merino with frequencies ranging from 0.10 to 0.28. On the basis of their phenotypic distributions at 11 blood polymorphic loci, the two populations differed significantly from each other (total chi 2 values = 352.62, 23 df, P less than 0.001). By comparing the observed magnitude of gene frequency differences between Rambouillet and Spanish Merino with the estimate of inbreeding coefficient for Rambouillet obtained from pedigrees, it appeared that the observed genetic differences could be attributed to the evolutionary change due to random drift in the small and closed flock of Rambouillet.  相似文献   

16.
Polyploidy has been important in the evolution of angiosperms and may significantly affect population genetic diversity and structure. Nineteen isoenzyme loci were studied in diploid and tetraploid populations of Vaccinium oxycoccos (Ericaceae), and the results are compared with data previously reported for the related V. macrocarpon. Diploid V. oxycoccos and V. macrocarpon were readily discriminated based on their allozymic variation. No evidence for fixed heterozygosity was found in tetraploid V. oxycoccos. In contrast, all polymorphic loci exhibited both balanced and unbalanced heterozygotes, with some individuals exhibiting a pattern consistent with the presence of three alleles. These results support an autopolyploid origin for tetraploid V. oxycoccos. However, tetraploid V. oxycoccos possessed a suite of alleles not found in diploid V. oxycoccos; half of these alleles were shared with V. macrocarpon. This suggests that autotetraploid V. oxycoccos may have undergone hybridization with V. macrocarpon or that the autotetraploid retained the genetic variation present in an ancestral diploid species. Following theoretical expectations, proportion of polymorphic loci, mean number of alleles, and observed heterozygosity were significantly higher for the autotetraploid than for the diploid. Mean inbreeding (F(IS)) was similar for diploid and tetraploid V. oxycoccos. The latter exhibited population differentiation (F(ST)) exceeding both diploid species.  相似文献   

17.
Osteopontin (OPN) is a cytokine that involves in vascular remodeling processes in cerebrovascular diseases. The association of its gene with ischemic stroke was investigated in a Korean population. Representative sequence variants covering the entire OPN gene were genotyped in 455 controls and 271 patients with ischemic stroke including large artery atherosclerosis (LAA), small vessel occlusion, and cardioembolism. Analysis with the individual tagging variants and their haplotypes revealed an evidence of association only with LAA. Significances were shown with the haplotypes, especially with the TCA at the loci C2140T, C5891T, and A7385G conferring a risk of 2.09 for LAA (P < 0.05). The CG at the loci C1013T and A7385G was the most protective haplotype (OR = 0.66, P < 0.05). Our findings suggested that several haplotypes of OPN gene contributed to determining risk factors as well as protective factors of LAA.  相似文献   

18.
The relationship between heterozygosity of 9 biochemical and 5 blood group loci and variability of body length and age of menarche were studied in 467 women and 336 men from Moscow population. High and low levels of individual heterozygosity were shown in men to be associated with the maximal values of the coefficient of variation (CV) of body length, while in women strong positive correlation between the CV of body length and individual heterozygosity was demonstrated. The highest level of heterozygosity was revealed in medium-height men and low-height women. Highly heterozygous women were characterized either by early or by late age of menarche; early onset of menarche causes growth retardation. Positive correlation between the CV of body length and heterozygosity in women is due to the accumulation of low-height individuals having early age of menarche. The results are discussed in terms of Lerner's concept of genetic homeostasis. It is concluded that an average level of heterozygosity is optimal for a population.  相似文献   

19.
The association between population dynamics and genetic variability is of fundamental importance for both evolutionary and conservation biology. We combined long-term population monitoring and molecular genetic data from 123 offspring and their parents at 28 microsatellite loci to investigate changes in genetic diversity over 14 cohorts in a small and relatively isolated population of mountain goats (Oreamnos americanus) during a period of demographic increase. Offspring heterozygosity decreased while parental genetic similarity and inbreeding coefficients (F(IS) ) increased over the study period (1995-2008). Immigrants introduced three novel alleles into the population and matings between residents and immigrants produced more heterozygous offspring than local crosses, suggesting that immigration can increase population genetic variability. The population experienced genetic drift over the study period, reflected by a reduced allelic richness over time and an 'isolation-by-time' pattern of genetic structure. The temporal decline of individual genetic diversity despite increasing population size probably resulted from a combination of genetic drift due to small effective population size, inbreeding and insufficient counterbalancing by immigration. This study highlights the importance of long-term genetic monitoring to understand how demographic processes influence temporal changes of genetic diversity in long-lived organisms.  相似文献   

20.
Mammal species characterized by highly fluctuating populations often maintain genetic diversity in response to frequent demographic bottlenecks, suggesting the ameliorating influence of life history and behavioral factors. Immigration in particular is expected to promote genetic recovery and is hypothesized to be the most likely process maintaining genetic diversity in fluctuating mammal populations. Most demographic bottlenecks have been inferred retrospectively, and direct analysis of a natural population before, during, and after a bottleneck is rare. Using a continuous 10-year dataset detailing the complete demographic and genetic history of a fluctuating population of golden-mantled ground squirrels (Spermophilus lateralis), we analyzed the genetic consequences of a 4-year demographic bottleneck that reduced the population to seven adult squirrels, and we evaluated the potential “rescue effect” of immigration. Analysis of six microsatellite loci revealed that, while a decline in allelic richness was observed during the bottleneck, there was no observed excess of heterozygosity, a characteristic bottleneck signature, and no evidence for heterozygote deficiency during the recovery phase. In addition, we found no evidence for inbreeding depression during or after the bottleneck. By identifying immigrants and analyzing their demographic and genetic contributions, we found that immigration promoted demographic recovery and countered the genetic effects of the bottleneck, especially the loss of allelic richness. Within 3 years both population size and genetic variation had recovered to pre-bottleneck levels, supporting the role of immigration in maintaining genetic variation during bottleneck events in fluctuating populations. Our analyses revealed considerable variation among analytical techniques in their ability to detect genetic bottlenecks, suggesting that caution is warranted when evaluating bottleneck events based on one technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号