首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We recently reported that p38 MAPK regulates TNF-induced endothelial apoptosis via phosphorylation and downregulation of Bcl-xL. Here, we describe that such apoptosis includes p38 MAPK-mediated, protein phosphatase 2A (PP2A)-dependent, downregulation of the MEK-ERK pathway. Inhibition of PP2A with fostriecin or calyculin A significantly increased MEK phosphorylation, as did exposure to the p38 MAPK inhibitor SB203580. Inhibition of MEK potentiated TNF-induced caspase-3 activity and cell death, and both those events were suppressed by treatment with fostriecin or calyculin A. Immunoprecipitation experiments revealed an association between p38 MAPK, PP2A and MEK, and the results of a phosphatase assay suggested that PP2A is a downstream target of p38 MAPK. Importantly, phosphorylation of Bad at Ser-112 was found to be regulated by p38 MAPK and PP2A. In summary, the present findings indicate a novel p38 MAPK-mediated apoptosis pathway, involving activation of Bad via PP2A-dependent inhibition of the MEK-ERK pathway.  相似文献   

2.
3.
4.
Yung LY  Tso PH  Wu EH  Yu JC  Ip NY  Wong YH 《Cellular signalling》2008,20(8):1538-1544
Differentiation of PC12 cells by nerve growth factor (NGF) requires the activation of various mitogen-activated protein kinases (MAPKs) including p38 MAPK. Accumulating evidence has suggested cross-talk regulation of NGF-induced responses by G protein-coupled receptors, thus we examined whether NGF utilizes G(i/o) proteins to regulate p38 MAPK in PC12 cells. Induction of p38 MAPK phosphorylation by NGF occurred in a time- and dose-dependent manner and was partially inhibited by pertussis toxin (PTX). NGF-dependent p38 MAPK phosphorylation became insensitive to PTX treatment upon transient expressions of Galpha(z) or the PTX-resistant mutants of Galpha(i2) and Galpha(oA). Moreover, Galpha(i2) was co-immunoprecipitated with the TrkA receptor from PC12 cell lysates. To discern the participation of various signaling intermediates, PC12 cells were treated with a panel of specific inhibitors prior to the NGF challenge. NGF-induced p38 MAPK phosphorylation was abolished by inhibitors of Src (PP1, PP2, and SU6656) and MEK1/2 (U0126). Inhibition of the p38 MAPK pathway also suppressed NGF-induced PC12 cell differentiation. In contrast, inhibitors of JAK2, phospholipase C, protein kinase C and Ca(2+)/calmodulin-dependent kinase II did not affect the ability of NGF to activate p38 MAPK. Collectively, these studies indicate that NGF-dependent p38 MAPK activity may be mediated via G(i2) protein, Src, and the MEK/ERK cascade.  相似文献   

5.
This study explores the signaling transduction cascade of ERK and p38 MAPK on regulating MAPK phosphatase-1 (MKP-1) and protein phosphatase 2A catalytic subunit α (PP2Acα) expression in caffeine-treated human leukemia U937 cells. Caffeine induced an increase in the intracellular Ca2 + concentration and ROS generation leading to p38 MAPK activation and ERK inactivation, respectively. Caffeine treatment elicited MKP-1 down-regulation and PP2Acα up-regulation. The transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) abolished the caffeine effect on MKP-1 and PP2Acα expression. Caffeine repressed ERK-mediated c-Fos phosphorylation but evoked p38 MAPK-mediated CREB phosphorylation. Knockdown of c-Fos and CREB by siRNA showed that c-Fos and CREB were responsible for MKP-1 and PP2Acα expression, respectively. Promoter and chromatin immunoprecipitating assay supported the role of c-Fos and CREB in regulating MKP-1 and PP2Acα expression. Moreover, transfection of dominant negative MKP-1 cDNA led to p38 MAPK activation and PP2Acα down-regulation in U937 cells, while PP2A inhibitor attenuated caffeine-induced ERK inactivation and MKP-1 down-regulation. Taken together, our data indicate that a reciprocal relationship between ERK-mediated MKP-1 expression and p38 MAPK-mediated PP2Acα expression crucially regulates ERK and p38 MAPK phosphorylation in U937 cells.  相似文献   

6.
Mitogen-activated protein kinases (MAPKs) play different regulatory roles in signaling oxidative stress-induced apoptosis in cardiac ventricular myocytes. The regulation and functional role of cross-talk between p38 MAPK and extracellular signal-regulated kinase (ERK) pathways were investigated in cardiac ventricular myocytes in the present study. We demonstrated that inhibition of p38 MAPK with SB-203580 and SB-239063 enhanced H(2)O(2)-stimulated ERK phosphorylation, whereas preactivation of p38 MAPK with sodium arsenite reduced H(2)O(2)-stimulated ERK phosphorylation. In addition, pretreatment of cells with the protein phosphatase 2A (PP2A) inhibitors okadaic acid and fostriecin increased basal and H(2)O(2)-stimulated ERK phosphorylation. We also found that PP2A coimmunoprecipitated with ERK and MAPK/ERK (MEK) in cardiac ventricular myocytes, and H(2)O(2) increased the ERK-associated PP2A activity that was blocked by inhibition of p38 MAPK. Finally, H(2)O(2)-induced apoptosis was attenuated by p38 MAPK or PP2A inhibition, whereas it was enhanced by MEK inhibition. Thus the present study demonstrated that p38 MAPK activation decreases H(2)O(2)-induced ERK activation through a PP2A-dependent mechanism in cardiac ventricular myocytes. This represents a novel cellular mechanism that allows for interaction of two opposing MAPK pathways and fine modulation of apoptosis during oxidative stress.  相似文献   

7.
8.
Homocysteine sulfinic acid (HCSA) is a homologue of the amino acid cysteine and a selective metabotropic glutamate receptor (mGluR) agonist. However, the metabolic role of HCSA is poorly understood. In this study, we showed that HCSA and glutamate stimulated glucose uptake in C2C12 mouse myoblast cells and increased AMP-activated protein kinase (AMPK) phosphorylation. RT-PCR and Western blot analysis revealed that C2C12 expresses mGluR5. HCSA transiently increased the intracellular calcium concentration. Although α-methyl-4-carboxyphenylglycine, a metabotropic glutamate receptor antagonist, blocked the action of HCSA in intracellular calcium response and AMPK phosphorylation, 6-cyano-7-nitroquinoxaline-2,3-dione, an AMPA antagonist, did not exhibit such effects. Knockdown of mGluR5 with siRNA blocked HCSA-induced AMPK phosphorylation. Pretreatment of cells with STO-609, a calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, blocked HCSA-induced AMPK phosphorylation, and knockdown of CaMKK blocked HCSA-induced AMPK phosphorylation. In addition, HCSA activated p38 mitogen-activated protein kinase (MAPK). Expression of dominant-negative AMPK suppressed HCSA-mediated phosphorylation of p38 MAPK, and inhibition of AMPK and p38 MAPK blocked HCSA-induced glucose uptake. Phosphorylation of protein kinase C ζ (PKCζ) was also increased by HCSA. Pharmacologic inhibition or knockdown of p38 MAPK blocked HCSA-induced PKCζ phosphorylation, and knockdown of PKCζ suppressed the HCSA-induced increase of cell surface GLUT4. The stimulatory effect of HCSA on cell surface GLUT4 was impaired in FITC-conjugated PKCζ siRNA-transfected cells. Together, the above results suggest that HCSA may have a beneficial role in glucose metabolism in skeletal muscle cells via stimulation of AMPK.  相似文献   

9.
Gong K  Li Z  Xu M  Du J  Lv Z  Zhang Y 《The Journal of biological chemistry》2008,283(43):29028-29036
A growing body of evidence has demonstrated that p38 mitogen-activated protein kinase (MAPK) has a crucial role in various physiological and pathological processes mediated by beta(2)-adrenergic receptors (beta(2)-ARs). However, the detailed mechanism of beta(2)-ARs-induced p38 MAPK activation has not yet been fully defined. The present study demonstrates a novel kinetic model of p38 MAPK activation induced by beta(2)-ARs in human embryonic kidney 293A cells. The beta(2)-AR agonist isoproterenol induced a time-dependent biphasic phosphorylation of p38 MAPK: the early phase peaked at 10 min, and was followed by a delayed phase that appeared at 90 min and was sustained for 6 h. Interestingly, inhibition of the cAMP/protein kinase A (PKA) pathway failed to affect the early phosphorylation but abolished the delayed activation. By contrast, silencing of beta-arrestin-1 expression by small interfering RNA inhibited the early phase activation of p38 MAPK. Furthermore, the NADPH oxidase complex is a downstream target of beta-arrestin-1, as evidenced by the fact that isoproterenol-induced Rac1 activation was also suppressed by beta-arrestin-1 knockdown. In addition, early phase activation of p38 MAPK was prevented by inactivation of Rac1 and NADPH oxidase by pharmacological inhibitors, overexpression of a dominant negative mutant of Rac1, and p47(phox) knockdown by RNA interference. Of note, we demonstrated that only early activation of p38 MAPK is involved in isoproterenol-induced F-actin rearrangement. Collectively, these data suggest that the classic cAMP/PKA pathway is responsible for the delayed activation, whereas a beta-arrestin-1/Rac1/NADPH oxidase-dependent signaling is a heretofore unrecognized mechanism for beta(2)-AR-mediated early activation of p38 MAPK.  相似文献   

10.
Degradation of collagenous extracellular matrix by collagenase 1 (also known as matrix metalloproteinase 1 [MMP-1]) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, chronic ulcers, and tumor invasion and metastasis. Here, we have investigated the role of distinct mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-1 gene expression. The activation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2 (designated ERK1,2) pathway by oncogenic Ras, constitutively active Raf-1, or phorbol ester resulted in potent stimulation of MMP-1 promoter activity and mRNA expression. In contrast, activation of stress-activated c-Jun N-terminal kinase and p38 pathways by expression of constitutively active mutants of Rac, transforming growth factor beta-activated kinase 1 (TAK1), MAPK kinase 3 (MKK3), or MKK6 or by treatment with arsenite or anisomycin did not alone markedly enhance MMP-1 promoter activity. Constitutively active MKK6 augmented Raf-1-mediated activation of the MMP-1 promoter, whereas active mutants of TAK1 and MKK3b potently inhibited the stimulatory effect of Raf-1. Activation of p38 MAPK by arsenite also potently abrogated stimulation of MMP-1 gene expression by constitutively active Ras and Raf-1 and by phorbol ester. Specific activation of p38alpha by adenovirus-delivered constitutively active MKK3b resulted in potent inhibition of the activity of ERK1,2 and its upstream activator MEK1,2. Furthermore, arsenite prevented phorbol ester-induced phosphorylation of ERK1,2 kinase-MEK1,2, and this effect was dependent on p38-mediated activation of protein phosphatase 1 (PP1) and PP2A. These results provide evidence that activation of signaling cascade MKK3-MKK3b-->p38alpha blocks the ERK1,2 pathway at the level of MEK1,2 via PP1-PP2A and inhibits the activation of MMP-1 gene expression.  相似文献   

11.
Oxidized low-density lipoprotein (OX-LDL) contributes significantly to the development of atherosclerosis. However, the mechanisms of OX-LDL-induced vascular smooth muscle cell (VSMC) proliferation are not completely understood. Therefore, we investigated the effect of OX-LDL on cell proliferation associated with a specific pattern of mitogen-activated protein kinase (MAPK) by [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in canine cultured VSMCs. OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in VSMCs. Pretreatment of these cells with pertussis toxin (PTX) for 24 hours attenuated the OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation, indicating that these responses were mediated through a receptor coupled to a PTX-sensitive G protein. In cells pretreated with PMA for 24 h and with either the PKC inhibitor staurosporine or the tyrosine kinase inhibitor genistein for 1h, substantially reduced the [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to OX-LDL. Removal of Ca(2+) by addition of BAPTA/AM plus EGTA significantly inhibited OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation, indicating the requirement of Ca(2+) for these responses. OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation was completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK). Furthermore, we also showed that overexpression of dominant negative mutants of Ras (RasN17) and Raf (Raf-301) completely suppressed MEK1/2 and p42/p44 MAPK activation induced by OX-LDL and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. Taken together, these results suggest that the mitogenic effect of OX-LDL is mediated through a PTX-sensitive G-protein-coupled receptor that involves the activation o Ras/Raf/MEK/MAPK pathway similar to those of PDGF-BB in canine cultured VSMCs.  相似文献   

12.
The signaling axis of p38 mitogen-activated protein kinase (p38 MAPK) and MAPK-activated protein kinase 2 (MK2) is the dominant pathway that leads to heat shock protein 27 (HSP27) phosphorylation. After activation of MK2 by p38 MAPK, HSP27 is phosphorylated and depolymerized by MK2, thereby increasing the cell migration and directly interfering with the apoptotic signaling cascades. Sec6 is one of the components of the exocyst complex that is an evolutionarily conserved 8-protein complex. Even though several studies have demonstrated that Sec6 is involved in various cellular physiological functions, the relationship between Sec6 and HSP27 or p38 MAPK during cell migration and apoptosis remains unclear. In the present study, we observed that Sec6 increased the phosphorylation of p38 MAPK through the activation of MAPK kinase 3/6 (MKK3/6). Moreover, Sec6 knockdown suppressed the phosphorylation of HSP27 at Ser78 and Ser82 sites via suppression of activated MK2. Furthermore, the reduction of phosphorylated HSP27 or p38 MAPK by Sec6 knockdown suppressed cell migration and promoted apoptosis after treatment with tumor necrosis factor-α and cycloheximide. The present study suggested that Sec6 is involved in the enhancement of cell migration and suppression of apoptosis through the activation of HSP27 or p38 MAPK phosphorylation.  相似文献   

13.
14.
Recently we demonstrated that PP2 (4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), a potent and selective inhibitor of the Src-family tyrosine kinase, markedly enhanced Ras-independent activation of Raf-1 by the combination of phorbol myristate acetate (PMA) and hydrogen peroxide (H(2)O(2)). We report here that Raf-1 knockdown cells were significantly more sensitive to treatment of PP2 than control cells. This PP2-induced growth inhibition was found to be linked to decreased ERK and p38 activity. Interestingly, the growth of Sprouty knockdown cells appeared to be inhibited at earlier time points of PP2 treatment when compared with control cells. Unexpectedly, siRNA-mediated knockdown of Spry2, which is known to modulate the Ras/Raf/MAPK signal through feedback regulation, resulted in decreased Raf-1 kinase activity. PP2 had limited effect on the ability of PMA/H(2)O(2) to induce significant phosphorylation of MEK/ERK proteins in both Spry2 knockdown and control cells, indicating that PP2-mediated activation of Raf-1 did not potentiate signaling through the downstream MEK/ERK pathway. Taken together our results suggest that Raf-1 signaling may be bypassed in PP2-treated cells by uncoupling from downstream MEK/ERK pathway.  相似文献   

15.
Adenosine A1 receptor activation causes protein phosphatase 2a (PP2a) activation in ventricular myocytes. This attenuates beta-adrenergic functional effects in the heart (Liu Q and Hofmann PA. Am J Physiol Heart Circ Physiol 283: H1314-H1321, 2002). The purpose of the present study was to identify the signaling pathway involved in the translocation/activation of PP2a by adenosine A1 receptors in ventricular myocytes. We found that N6-cyclopentyladenosine (CPA; an adenosine A1 receptor agonist)-induced PP2a translocation was blocked by p38 MAPK inhibition but not by JNK inhibition. CPA increased phosphorylation of p38 MAPK, and this effect was abolished by pertussis toxin and inhibitors of the cGMP pathway. Moreover, CPA-induced PP2a translocation was blocked by inhibition of the cGMP pathway. Guanylyl cyclase activation mimicked the effects of CPA and caused p38 MAPK phosphorylation and PP2a translocation. Finally, CPA-induced dephosphorylations of troponin I and phospholamban were blocked by pertussis toxin and attenuated by p38 MAPK inhibition. These results suggest that adenosine A1 receptor-mediated PP2a activation uses a pertussis toxin-sensitive Gi protein-guanylyl cyclase-p38 MAPK pathway. This proposed, novel pathway may play a role in acute modulation of cardiac function.  相似文献   

16.
17.
18.
Zhao LJ  Zhao P  Chen QL  Ren H  Pan W  Qi ZT 《Cell proliferation》2007,40(4):508-521
OBJECTIVE: Hepatitis C virus (HCV) is a major pathogenic factor of liver diseases. During HCV infection, interaction of the envelope protein E2 of the virion, with target cells, is a crucial process for viral penetration into the cell and its propagation. We speculate that such interaction may trigger early signalling events required for HCV infection. MATERIALS AND METHODS: Human liver cell line L-02 was treated with HCV E2. The kinase phosphorylation levels of mitogen-activated protein kinase (MAPK) signalling pathways in the treated cells were analyzed by Western blotting. The proliferation of the E2-treated cells was evaluated by MTT assay. RESULTS: HCV E2 was shown to be an efficient activator for MAPK pathways. Levels of phosphorylation of upstream kinases Raf-1 and MEK1/2 were seen to be elevated following E2 treatment and similarly, phosphorylation levels of downstream kinases MAPK/ERK and p38 MAPK also increased in response to E2 treatment, and specificity of kinase activation by E2 was confirmed. E2-induced MAPK/ERK activation was inhibited by the MEK1/2 inhibitor U0126 in a concentration-dependent manner. Blockage of relevant cellular receptors reduced activation of Raf-1, MEK1/2, MAPK/ERK and p38 MAPK by E2, indicating efflux of the E2 signal from extracellular to the intracellular spaces. Thus, kinase cascades of MAPK pathways were continuously affected by E2 presence. Moreover, enhancement of cell proliferation by E2 appeared to be associated with the dynamic phosphorylation of MAPK/ERK and p38 MAPK. CONCLUSION: These results suggest that MAPK signalling pathways triggered by E2 may be a potential target for prevention of HCV infection.  相似文献   

19.
Protein phosphatase 2A (PP2A) is a family of mammalian serine/threonine phosphatases that is involved in the control of many cellular functions including those mediated by extracellular signal-regulated kinase (ERK) signaling. While investigating the reversible antiproliferative effect of the dietary lectin, jacalin, which binds the Thomsen-Friedenreich antigen (galactose beta1-3 N-acetylgalactosamine alpha-), we have found that this lectin (30 microg/ml) induces rapid, transient, tyrosine phosphorylation of putative human HLA-DR-associated protein I (PHAPI, also known as the tumor suppressor pp32) in HT29 human colon cancer cells. This is accompanied by the release of PP2A from association with PHAPI, allowing increased phosphatase activity of PP2A (by 42 +/- 10% at 10 min) and consequent complete dephosphorylation of the ERK kinase, MEK1/2, by 10 min and of ERK1/2 by 60 min. PHAPI knockdown by RNA interference abolished the effects of jacalin on PP2A activation and MEK inhibition. Thus phosphorylation of PHAPI/pp32 is a critical regulatory step in PP2A activation and ERK signaling.  相似文献   

20.
We have previously reported that cyclic strain results in rapid phosphorylation of p38 mitogen activated protein kinase (MAPKs). The aim of this study was to examine the role of protein phosphatase type 2A (PP2A) in regulating p38 MAPK activation in bovine aortic endothelial cells exposed to cyclic strain. In this study, we demonstrate that the catalytic subunit of PP2A is tyrosine phosphorylated by cyclic strain, resulting in inhibition of phosphatase activity. Okadaic acid, an inhibitor of PP2A at lower concentrations increased phosphorylation of p-38. Phospho-p38 MAPK physically associated with the catalytic subunit, PP2Ac. Phospho-p38 MAPK was dephosphorylated by purified PP2Ac in cell lysates, but if pretreated with okadaic acid, phospho-p38 MAPK was maintained. Taken together, our result suggests that PP2A plays a regulatory role in p38 MAPK activation in endothelial cells exposed to cyclic strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号