首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The actions of the peptide leukotrienes (LT) LTC4, LTD4 and LTE4 and phenylephrine (PE) were studied in isolated left branches of the guinea-pig pulmonary artery (GPPA). Indomethacin 5 x 10(-6) M enhanced both the potency and maximal response of all agonists, but the effect on LTD4 and LTE4 was larger. The influence of indomethacin suggests the release of an endogenous vasodilating cyclooxygenase product in GPPA. In the presence of indomethacin the rank-order of potency was LTC4 greater than LTD4 greater than LTE4 greater than or equal to PE with respective pD2 values of 7.65, 7.39, 6.35 and 6.26. All further studies were carried out in the presence of 5 x 10(-6) M indomethacin. Removal of the endothelium further increased both potency (greater than 3-fold) and the maximal response of all agonists tested, indicating that a non-cyclooxygenase endothelium-dependent relaxing factor may be present in GPPA. In separate studies, GPPA was demonstrated capable of metabolizing 3H-LTC4 to 3H-LTD4 by an L-serine borate inhibitable gamma-glutamyl transpeptidase. In contrast, relatively little formation of 3H-LTE4 was apparent either from 3H-LTC4 or 3H-LTD4. The LTD4-selective antagonists, LY 171,883 and ICI 198,615 had -log molar KB values of 6.07 +/- 0.14 and 9.38 +/- 0.32, respectively, against LTD4 in the absence of endothelium. The ability of LY 171,883 to antagonize LTC4 was eliminated in the presence of 45 mM serine borate in endothelium denuded tissues. LT receptors in GPPA appear to be heterogeneous and similar to guinea pig airway receptors.  相似文献   

2.
The homogenate of rat basophilic leukemia cells produces both the dihydroxy-leukotrienes and the peptido-leukotrienes (LT) C4, D4 and E4. The enzymes responsible for the formation of LTA4 and LTB4 are in the soluble fraction while the enzymes for LTC4, LTD4 and LTE4 are particulate (10, 000 × g pellet). Centrifugation of the 10, 000 × g pellet over a sucrose gradient resulted in two subfractions, a membrane fraction and a pellet (sucrose pellet.) The fractions were incubated with LTC4, and the products were identified by bioassay, HPLC and UV spectra. The membrane fraction contained the enzymes γ-glutamyl transpeptidase and amino peptidase which convert LTC4 to LTD4 and LTD4 to LTE4, respectively. When incubated with LTC4, the membrane fraction showed a dose dependent formation of LTD4 and a time course which reached a plateau at 30 to 45 minutes. Addition of serine borate blocked the formation of LTD4, and cysteine blocked LTE4. We conclude that the γ-glutamyl transpeptidase and the amino peptidase which produce LTD4 and LTE4 respectively are plasma membrane bound.  相似文献   

3.
The contractile activities of peptide leukotrienes (LT) on isolated spiral strips of ferret trachea were chracterized pharmacologically. LTC4 and LTD4 contracted ferret tracheal strips in a concentration-related manner and were 3- to 8-fold more potent than carbachol. In contrast, high concentrations of LTE4 evoked either weak contraction or none at all, whereas LTC4 and D4 were partial agonists compared to carbachol. In tissues which were unresponsive to LTE4, this compound antagonized contractile responses to LTC4 and D4 in an apparently competitive manner: Carbachol-induced contractions were not altered by LTE4. The cyclooxygenase inhibitor, indomethacin (5 μM), LT antagonists, FPL55712 (10 μM), atropine (1 μM), phenoxybenzamine (10 μM), and LTB4 (10 μM) failed to alter LTC4 and D4 concentration-response curves. The results in dicate that ferret trachea is sensitive to the contractile activity of LTC4 and LTD4 but not LTE4. The LT-induced contractions appear to be mediated by a direct action of the LT rather than indirectly through release of secondary mediators such as thromboxane, prostaglandin, or acetylcholine. LT receptors in ferret trachea are insensitive to FPL55712 but are antagonized by LTE4.  相似文献   

4.
The biological effects of leukotriene (LT)F4 were compared, on a molar basis, with those of LTC4, LTD4 and LTE4 on isolated superfused strips of guinea-pig ileum smooth muscle (GPISM) and lung parenchyma (GPP). LTF4 was 1–2 orders of magnitude less active than the other leukotrienes on GPISM (LTD4 > LTC4 > LTE4 > LTF4) whereas, in the GPP, the activity of LTF4 was comparable with that of LTE4, both leukotrienes being about one order of magnitude less active than LTC4 or LTD4 (LTC4=LTD4 > LTE4=LTF4). Further, LTF4 caused protracted contractions of the GPP which were indistinguishable from those due to LTE4 and of a much longer duration than responses elicited by either LTC4 or LTD4.FPL 55712 (1.9μM) antagonised actions of LTF4 in both tissue preparations. Indomethacin (2.8μM) inhibited contractions induced by LTF4 in GPP indicating that part of the bronchoconstriction due to LTF4, like that elicited by the other leukotrienes, is mediated via release of cyclo-oxygenase products.  相似文献   

5.
Human arterial rings incubated in modified Tyrode solution released small amounts of leukotriene (LT) C4-like material spontaneously and larger amounts upon stimulation with the ionophore A23187 as determined by radioimmunoassay. By reversed phase high pressure liquid chromatography (HPLC) LTC4-like material was found to comigrate with authentic LTC4, LTD4 and LTE4. Nordihydroguaiaretic acid (NDGA) significantly inhibited the ionophore A23187-induced release of LTC4-like material, while indomethacin was without effect. Simultaneously the arterial rings released much larger amounts of 6-keto-prostaglandin (PG) F, which were significantly decreased by indomethacin. The results demonstrate that human arterial tissue has the capacity to synthesize cysteinyl-containing LT from endogenous arachidonic acid.  相似文献   

6.
The novel metabolites of arachidonic acid, leukotriene (LT) A4, B4, C4, D4 and E4 have potent myotropic activity on guinea-pig lung parenchymal strip . The receptors responsible for their action were characterized using desensitization experiments and the selective SRS-A antagonist, FPL-55712. During the continuous infusion of LTB4, the tissues became desensitized to LTB4 but were still responsive to histamine, LTA4, LTC4, LTD4 and LTE4. When LTD4 was infused continuously, the lung strips contracted to LTB4 and histamine but were no longer responsive to LTA4, LTC4, LTD4 and LTE4. Furthermore, FPL-55712 (10 ng ml−1− 10 ug ml−1) produced dose-dependent inhibitions of LTA4, LTC4, LTD4 and LTE4 without inhibiting the contraction to LTB4 and histamine. On the basis of these results, it appears that the guinea-pig lung parenchyma may have one type of receptor for LTB4 and another for LTD4; LTA4, LTC4 and LTE4 probably act on the LTD4 receptor.  相似文献   

7.
Leukotriene (LTC4) is one of the components of Slow Reacting Substance of Anaphylaxis (SRS-A) and is a potent constrictor of guinea pig ilea. The contraction is likely to be a receptor-mediated process. Here we report the existence of specific binding sites for 3H-LTC4 in a crude membrane preparation from guinea pig ileal longitudinal muscle.At 4°C in the presence of 20 mM Serine-borate, binding increases linearly with protein concentration, reaches equilibrium in 10 minutes, and is reversible upon addition of 3 × 10−5M unlabelled LTC4. The dissociation curve is consistent with the existence of more than one class of binding site. Ca++ and Mg++ greatly enhance the binding of 3H-LTC4 at equilibrium. In the presence of 5mM CaCl2 and MgCl2 not only LTC4 (IC50 10−7M), but also LTD4 (albeit with much lower affinity, IC50 = 6 × 105M) and the SRS-A antagonist FPL 55712 (IC50 = 10−5M) can compete with 3H-LTC4 for its binding sites. FPL 55712 only displaces 60–70% of the total amount bound, while LTC4 displaces 90–95%.These studies indicate that multiple classes of binding sites exist for 3H-LTC4 in guinea pig ileal longitudinal muscle, and that at least part of these binding sites might be related to the ability of LTC4 to contract guinea pig ilea.  相似文献   

8.
The interaction of leukotriene C4 (LTC4) with the contractile activity of histamine (H), serotonin (5HT) and norepinephrine (NE) has been investigated in isolated vascular preparations. Threshold concentration of LTC4 (5 × 10−9 M) significantly potentiated the vasoconstricting effect of these compounds on guinea-pig pulmonary artery (GPPA). This phenomenon was long-lasting for H since it was still present 40 min after LTC4 had been washed. FPL-55712 (10−5M) counteracted the increased H response on GPPA induced by LTC4. Potentiation of H activity due to LTC4 was also observed on guinea-pig thoracic aorta (GPTA) indicating that LTC4-induced hyperreactivity is not a phenomenon restricted to the pulmonary vascular bed. In the experiments carried out in presence of indomethacin (3 × 10−6M), LTC4 still potentiated H-induced vasoconstriction on GPPA, however the time course of the phenomenon was significantly shorter than that observed in absence of the cyclooxygenase inhibitor. The contractile activity of H and NE on guinea-pig portal vein (GPPV) was not potentiated by LTC4 These results demonstrate that LTC4 induces hyperreactivity of the arterial vascular tissue to vasoactive compounds and suggest that cysteinyl-leukotrienes may have pathological significance in the hemodynamic changes occurring during anaphylactic reactions. Preliminary experiments carried out on human intralobar pulmonary artery strongly support this hypothesis.  相似文献   

9.
Tritium-labeled leukotrienes C4 and D4 (LTC4 and LTD4) bind to membranes from guinea pig lung. Binding properties of the two ligands are almost identical. More than 80% of 3H-LTC4 and 3H- LTD4 binding can be blocked by unlabeled LTC4 (IC50 8 nM versus 3H-LTC4 and 8 nM versus 3H-LTD4), LTD4 (12 nM, 16 nM), LTE4 (40 nM, 98 nM), and the leukotriene antagonist FPL 55712 (14 μM, 11 μM). Binding is reversible (50% dissociation at 65 min for both ligands at 25°). Binding of 3H-LTC4 and 3H-LTD4 is enhanced by divalent cations and inhibited by sodium ions, guanine nucleotides, and EDTA. 3H-LTD4 binds in unaltered form, but 3H-LTC4 appears to bind mostly after conversion to 3H-LTD4. The high affinity, reversibility, and regulation by ions and guanine nucleotides of 3H-LTC4 and 3H-LTD4 binding strongly imply that these binding sites are physiological LTD4 receptors.  相似文献   

10.
Peptidoleukotrienes are known to be potent smooth muscle contractile agents in many tissues, including guinea pig uterus. In order to characterize the receptors at which the leukotrienes interact, guinea pig uteri were homogenized in 50nM Tris-HCl, pH 7.4 at 40°C and centrifuged at 1000xg fpr 10 min. The supernatant was centrifuged at 40,000 xg and the washed pellet was used to measure the binding of 3H-LTC4 and 3H-LTD4. Specific binding of 3H-LTD4 was not detected, but specific, saturable binding of 3H-LTC4 was measured at 40°C, was complete in 10 min. and was rapidly reversible on addition of unlabeled LTC4. Binding was linear with protein concentration and stimulated by CaCl2 and L-serine borate. Scatchard and kinetic analysis of binding in the presence of calcium suggested a Kd of 10–12 nM. LTC4 was a more potent competitor of binding than LTD4 (IC50 − 40nM and 30 μM, respectively). FPL 55712 inhibited binding from 10–100 μM but stimulated binding at lower concentrations. Thus, the guinea pig uterus has specific receptors for LTC4, but not LTD4, that can be demonstrated by radioligand binding.  相似文献   

11.
In order to examine the modulation of leukotriene (LT) release, the PAF-acether-mediated stimulation of these compounds in rat lung was studied. Release of LTC4, LTD4 and LTE4 in both perfused and chopped lung preparations was measured using HPLC and radioimmunoassay. Pre-incubation or pre-infusion of the tissue with indomethacin and PGE2 was conducted to investigate the effect of cyclooxygenase inhibitors and products on the lipoxygenase pathway. In addition, the effects of LT levels of pre-incubation with vasoactive intenstinal polypeptide (VIP) in chopped lung were observed.In perfused rat lung, indomethacin reduced the levels of LTC4 relative to LTD4 as measured in the first 2 min after stimulation of the lung by PAF-acether. Chopped lung preparations, incubated for 15 min. exhibited higher levels of LTC4 and LTD4 in indomethacin-treated samples, this increases being effectively reversed by PGE2.In the VIP pre-incubation experiments clear inhibition of peptido -leukotriene synthesis was observed, with no LTC4 and only low levels of LTD4 and LTE4 observed in VIP-incubated samples. In preliminary experiments using rabbit C5a des arg and PAF-acether on rabbit lung parenchyma strips to stimulaet LT release, disodium cromoglycate pre-incubation was observed to inhibit this release.Inhibition of the 5-lipoxygenase pathway of PGE2 is supported by these experiments. VIP appears to act as an inhibitor of LTC4 and LTD4 biosynthesis or release in this model. Too little is known that peptidergic actions to postulate a mechanism by which a neuroendocrine peptide exerts control of release of arachidonate metabolites; however, VIP is associated with muscarinic stimulation (1) and has been found in mast cells (2).  相似文献   

12.
A simple and sensitive radioreceptor assay (RRA) for leukotrienes (LTs) was developed using a highly specific [3H]leukotriene D4 (LTD4) binding to guinea pig lung membrane homogenates. The assay can detect down to 0.15 pmol of LTD4. The values for fifty percent inhibition of bound [3H]LTD4 was 1.5 nM for LTD4, 45 nM for LTC4 and 24 nm for LTE4. LTB4 at 3.0 × 10−5 M had no effect on [3H]LTD4 binding. The RRA for LTs in the absence of serine-borate complex was bi-specific for both LTC4 and LTD4. However, in the presence of 20 nM serine-borate this method was highly specific for LTD4. Recovery rate averaged 87.2% after ethanol extraction and evaporation of known amounts of LTD4. When the radioreceptor assay and radioimmunoassay data for leukotriene levels in the samples were compared to each other, an excellent correlation was observed with a correlation coefficient ‘r’ of 0.992. The assay was also validated by quantitation of LTs released from human granulocytes stimulated with calcium ionophore, A23187. The method is simpler, less expensive, and more specific for LTD4 than the other methods such as high pressure liquid chromatography and radioimmunoassay and is suitable for routine measurement of either LTD4 specifically or LTC4 plus LTD4 simultaneously in one cell system.  相似文献   

13.
In the presence of indomethacin, Leukotriene C4 (LTC4), LTD4 and LTE4 were shown to be contractile agents on guinea pig gall bladder strips. The respective pD2 values for LTC4, LTD4 ad LTE4 were 9.1, 9.1 and 7.7. The contractile effects of LTD4 were not mediated through the generation of cyclooxygenase products and were antagonized by the SRS-A antagonist FPL-55712. The effects of PGE1, PGF2α, the endoperoxide analogue U44069 and histamine on gall bladder strips were also examined. All these agents caused dose-related contractions but were considerably less potent than the leukotrienes. Leukotrienes are therefore potent contractile agents on the guinea pig gall bladder and may contribute to gall bladder contractions or spasms .  相似文献   

14.
We have studied the effects of a lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) on antagonim of leukotriene (LT) C4-induced contractions of isolated guinea-pig trachea and the results were compared to that of a cycloocygenase inhibitor indomethacin, NDGA (30 μM) as well as idomethacin (5 μM) inhibited LTC4-iduced contraction. But in the presence of indomethacin NDGA was ineffective to inhibit the LTC4 response, whereas two other lipoxygenase inhibitors, phenidone (3–30 μM) and 5,8,11,14-eicostatetraynoic acid (ETYA, 10 μM), markedly inhibited it. The antagonist action of an LTD4 receptor antagonist FPL55712 against LTC4-induced contractions was significantly reduced by NDGA (10–30 μM), but indomethacin had no effect on it. NDGA possessed the same inhibitory effect n the LTC4 antagonism in the presence of indomethacin, but 0.3 μM phenidone and 1 μM ETYA which did not inhibit the LTC4 response had no effect on it. NDGA also inhibited the relaxant response of isoproterenol on the contraction elicited by 30 nM LTC4, but did not affect those of forskolin and aminophylline. The relaxant response of isoproterenol on the LCT4 response was not inhibited by indomethacin, 0.3 μM phenidone and 1 μM ETYA. In the presence of a γ-glutamyltranspeptidase inhibitor, L-serine borate (SB, 45 mM), NDGA had no effect on the LTC4 antagonism and the relaxant response of isoproterenol. In contrast, NDGA significantly inhibited the relaxant response of isoproterenol on 30 μM histamine- and 30 μM acetylcholine-induced contractions, but it did not affect the histamine antagonism by a histamine H1-blocker pyrilamine. These results suggest that some putative nonprostanoids are involved in LTC4-induced contractions of guinea-pig trachea and which regulate the effects of LTD4 antagonism and β-adrenoceptor activation.  相似文献   

15.
Pulmonary responses to intravenous leukotrienes C4, D4 and E4 administered as a bolus injection and by continuous infusion were studied in anesthetized guinea pigs. LTD4, LTC4 and LTE4 (respective ED50 of 0.21 ± .1, 0.64 ± .2 and 2.0 ± .1 μg kg−1) produced dose-dependent increases in insufflation pressure when given as a bolus injection to anesthetized guinea pigs (Konzett-Rössler). Bronchoconstriction was antagonized by FPL-55712 (50–200 μg kg−1), and indomethacin (50–200 μg kg−1) but was not significantly altered by mepyramine (1.0 mg kg−1), methysergide (0.1 mg kg−1), intal (10 mg kg−1) mepacrine (5 mg kg−1) or dexamethasone (10 mg kg−1). The beta adrenoceptor blocker, timolol (5 μg kg−1) produced a significantly greater potentiation of the responses to the leukotrienes than to arachidonic acid, histamine and acetylcholine. Responses to bolus injection of LTE4 but not LTD4 or LTC4 were partially antagonized by atropine (100 μg kg−1) and bilateral vagotomy. In experiments of a different design, continuous infusion of LTD4 and LTE4 (2.8–3.2 μg kg−1 min−1) into indomethacin-treated animals produced slowly developing increases in pulmonary resistance and decreases in compliance. The increase in resistance produced by LTE4 and LTD4 was partly reversed by intravenous FPL-55712 (1.0 mg kg−1) and atropine (100 μg kg−1) but was almost completely reversed by FPL-55712 (3 – 10 mg kg−1). These findings indicate that leukotrienes can produce bronchoconstriction in guinea pigs through cyclooxygenase-dependent and cyclooxygenase independent mechanisms both of which are blocked by FPL-55712. Cholinergic mechanisms are involved in the mediation of part of the response to bolus injection of LTE4 as well as a small part of the initial response to continuous infusion of LTD4 and LTE4. Intrinsic beta adrenoceptor activation serves to down modulate responses to the leukotrienes to a greater extent than responses to arachidonic acid, histamine and acetylcholine.  相似文献   

16.
In the isolated rat stomach perfused via the vasculature in situ under constant pressure bolus injections of platelet-activating factor (PAF, 3, 16, or 50 ng) induced dose-dependent, long-lasting reductions of flow rates and simultaneously significant increases in the release of cysteinyl-leukotrienes (cys-LT), thromboxane (TX) B2 and 6-keto-prostaglandin (PG) F. Reversed phase high pressure liquid chromatography demonstrated the release of a mixture of comparable amounts of LTC4, LTD4 and LTE4 by PAF. Inhibition of cys-LT sythesis by the lipoxygenase inhibitors nordihydroguaiaretic acid (NDGA) and L-651, 896 did not significantly affect PAF-induced flow reduction indicating that endogenous cys-LT are of minor importance for the PAF effect on gastric vascular flow. This conclusion is supported by the fact that the cys-LT receptor antagonist FPL 55712 in a concentration (1 × 10−6 M) that completely antagonized gastric flow reduction by exogenous LTC4 (1 × 10−7 M) had no effect on the PAF-induced reduction of flow. The cyclooxygenase inhibitor indomethacin aggravated the PAF-induced flow reduction suggesting that the endogenous vasodilator PGI2 might act as a functional PAF antagonist in the rat gastric vascular bed. In contrast to FPL 55712 the PAF antagonist BN 52021 significantly and concentration-dependently antagonized the PAF effect on gastric vascular flow. The results demonstrate that PAF and LTC4 induce flow reductions in the rat gastric vascular bed by activating different receptors and that endogenous eicosanoids released by PAF do not contribute significantly to the PAF effect on gastric vascular flow.  相似文献   

17.
Leukotriene F4 (LTF4 and LTF4 sulfone have been synthesized and their biological activities determined in the guinea pig. LFT4 displayed comparable activity to LTD4 on guinea pig trachea and parenchyma but was less active on the ileum. When injected intravenously into the guinea pig, LTF4 induced a bronchoconstriction (ED50 16 μg Kg−1) which was blocked by indomethacin and FPL-55712 and was 50–100 X less potent than LTD4 in this assay. LTF4 sulfone was approximately 2–5 times less active than LTF4 and . When injected into guinea pig skin with PGE2 (100 ng); LTF4 and LTF4 sulfone (10–1000 ng) induced changes in vascular permeability. The order of potency in this assay was LTE4 sulfone = LTD4 = LTD4 sulfone > LTE4 > LTF4 = LTF4 sulfone.  相似文献   

18.
A sensitive and specific assay has been developed for measurement of total sulfidopeptide leukotriense (LT) in plasma. LTC4 and LTD4 in plasma are converted to LTE4 which is then extracted by C18 Sep-Pak binding and elution. Total LTE4 in resolved by reverse phase high performance liquid chromatography (RP-HPLC) and quantitated by radioimmunoassay (RIA). A [3H]LTE4 internal standard is added to the starting plasma sample to allow RP-HPLC to be assayed for LTE4-like immunoreactivity. The correlation between the measured increase in LTE4 concentration after addition of incremental amounts of LTC4 and LTE4 to plasma was 0.989 and 0.978, respectively, with slopes of 1.05 and 1.11. Addition of 51 pg/ml LTE4 to 5 ml plasma was detectable; the measured increase was 48 ± 12 pg/ml (mean ± SE, n = 7). The intra-assay coefficient of variation for 341 pg/ml of added LTC4 was 3.2% (n = 6). Sulfidopeptide leukotrienes could not be detected in blood samples taken from 12 normal volunteers in whom the theoretical detection limit, calculated from the sensitivity of the RIA, the overall recovery of LTE4, and the volume of plasma extracted, was 83 ± 4 pg LTE4/ml plasma (0.19 ± 0.01 pmol sulfidopeptide leukotriene/ml plasma; mean ± SE).  相似文献   

19.
Since leukotriene C4 (LTC4) may be locally synthesized by bone marrow-derived cells infiltrating the kidney in inflammatory renal diseases we examined the in vitro metabolism of exogenously added |3H| LTC4 by rat glomeruli and papilla using radiometric HPLC. Homogenized as well as intact glomeruli converted |3H| LTC4 mainly into |3h| LTE4 (83%) and, at a smaller extent, into |3H| LTD4 (4%). Intact |3H| LTC4 represented 13% of the sum of radioactive leukotrienes. Addition of L-cysteine resulted in accumulation of LTD4. In contrast, there was nearly no conversion of |3H| LTC4 (87% ntact) in the presence of homogenized papilla. The metabolism of |3H| LTC4 by the glomeruli was time- and temperature- dependent. The 10,000 g supernatant and pellet of homogenized glomeruli both retained the ability to metabolize |3H| LTC4. The papillary 10,000 g supernatant was inactive, as found for the total homogenate, whereas the papillary 10,000 g pellet separated from its supernatant could transform |3H| LTC4 into its metabolites, LTD4 and LTE4. Addition of increasing amounts of papillary 10,000 g supernatant to homogenized glomeruli progressively protected |3H| LTC4 from its bioconversion. These results demonstrate that both glomeruli and papilla possess the γ-glutamyl transpeptidase and dipeptidase necessary to process LTC4. However, the enzyme activity of the papilla is unmasked only when the inhibitor present in the 10,000 g supernatant is separated from the enzyme present in the pellet.  相似文献   

20.
Although certain prostaglandins have been found to be inhibitory to nerve-evoked salivary flow, little is known of the effects the leukotrienes on salivary secretion. It was the purpose of this investigation to examine the effects of leukotrienes C4 (LTC4) and D4 (LtD4) on salivary secretion in the rat, using methacholine or substance P to induce basal secretion, and to test whether or not the observed effects of these eicosanoids were receptor-mediated by using the leukotriene receptor blocker FPL-55712.Methacholine (3 × 10−4 M), or substance P (1 × 10−6 M) was infused intra-arterially to stimulate secretion and saliva was collected separately from the parotid gland and the submandibular gland of anesthetized rats. LTC4 and LTD4 (each at 1 × 10−9 to 1 × 10−6 M) were found to reduce methacholine- and substance P-induced salivary flow in a dose-related manner. Salivary protein concentration and amylase activity were not significantly altered by the leukotrienes; however, arginine-esterase activity, stimulated by substance P, was increased by both leukotrienes. FPL-55712 (1 × 10−8 M) was shown to reduced the inhibitory effects of LTC4 and LTD4, suggesting the involvement of leukotriene receptors for these agents in their action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号