首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several observations suggest the presence of an interaction between immune and the endocrine systems. Leptin is an adipocyte-derived hormone, that belongs structurally to the long-chain helical cytokine family such as interleukin-2 (IL-2), interleukin-12 (IL-12), growth hormone (GH), and signals by a class I cytokine receptor (Ob-R). This cytokine represents an important link between fat mass on the one side and the regulation of energy balance and reproductive function on the other. Indeed, obese leptin-deficient ob/ob mice display low body temperature, hyperphagia, infertility and evidence of immune defects with lymphoid organ atrophy, mainly affecting thymic size and cellularity. Acute starvation, associated with decreased leptin levels, causes thymic atrophy and reduces the delayed type hypersensitivity (DTH) reaction to antigens in normal mice, resembling that observed in ob/ob mice. Leptin replacement reverses the immunosuppressive effects of acute starvation in mice. Leptin differentially affects the in vitro proliferation and cytokine production by naive and memory T cells, increasing IL-2 secretion and proliferation of naive T cells, while inducing IFN-g production in memory T cells with little effect on their proliferation. Presence of leptin seems to be necessary for the induction and maintenance of the pro-inflammatory Th1 immune response. These findings support the hypothesis that leptin plays a key role in linking nutritional state to the T cell function. According to this view, leptin might represent an important target for immune intervention in a variety of pathophysiological conditions.  相似文献   

2.
Aim To investigate the impact of geographical bias on the performance of ecological niche models for invasive plant species. Location South Africa and Australia. Methods We selected 10 Australian plants invasive in South Africa and nine South African plants invasive in Australia. Geographical bias was simulated in occurrence records obtained from the native range of a species to represent two scenarios. For the first scenario (A, worst‐case) a proportion of records were excluded from a specific region of a species’ range and for the second scenario (B, less extreme) only some records were excluded from that specific region of the range. Introduced range predictions were produced with the Maxent modelling algorithm where models were calibrated with datasets from these biased occurrence records and 19 bioclimatic variables. Models were evaluated with independent test data obtained from the introduced range of the species. Geographical bias was quantified as the proportional difference between the occurrence records from a control and a biased dataset, and environmental bias was expressed as either the difference in marginality or tolerance between these datasets. Model performance [assessed using the conventional and modified AUC (area under the curve of receiver‐operating characteristic plots) and the maximum true skill statistic] was compared between models calibrated with occurrence records from a biased dataset and a control dataset. Results We found considerable variation in the relationship between geographical and environmental bias. Environmental bias, expressed as the difference in marginality, differed significantly across treatments. Model performance did not differ significantly among treatments. Regions predicted as suitable for most of the species were very similar when compared between a biased and control dataset, with only a few exceptions. Main conclusions The geographical bias simulated in this study was sufficient to result in significant environmental bias across treatments, but despite this we did not find a significant effect on model performance. Differences in the environmental spaces occupied by the species in their native and invaded ranges may explain why we did not find a significant effect on model performance.  相似文献   

3.
‘Fire mosaics’ are often maintained in landscapes to promote successional diversity in vegetation with little understanding of how this will affect ecological processes in animal populations such as dispersal, social organization and re‐establishment. To investigate these processes, we conducted a replicated, spatiotemporal landscape genetics study of two Australian woodland lizard species [Amphibolurus norrisi (Agamidae) and Ctenotus atlas (Scincidae)]. Agamids have a more complex social and territory structure than skinks, so fire might have a greater impact on their population structure and thus genetic diversity. Genetic diversity increased with time since fire in C. atlas and decreased with time since fire in A. norrisi. For C. atlas, this might reflect its increasing population size after fire, but we could not detect increased gene flow that would reduce the loss of genetic diversity through genetic drift. Using landscape resistance analyses, we found no evidence that postfire habitat succession or topography affected gene flow in either species and we were unable to distinguish between survival and immigration as modes of postfire re‐establishment. In A. norrisi, we detected female‐biased dispersal, likely reflecting its territorial social structure and polygynous mating system. The increased genetic diversity in A. norrisi in recently burnt habitat might reflect a temporary disruption of its territoriality and increased male dispersal, a hypothesis that was supported with a simulation experiment. Our results suggest that the effects of disturbance on genetic diversity will be stronger for species with territorial social organization.  相似文献   

4.
Background and AimsUnderstanding how plant allometry, plant architecture and phenology contribute to fruit production can identify those plant traits that maximize fruit yield. In this study, we compared these variables and fruit yield for two shrub species, Vaccinium angustifolium and Vaccinium myrtilloides, to test the hypothesis that phenology is linked to the plants’ allometric traits, which are predictors of fruit production.MethodsWe measured leaf and flower phenology and the above-ground biomass of both Vaccinium species in a commercial wild lowbush blueberry field (Quebec, Canada) over a 2-year crop cycle; 1 year of pruning followed by 1 year of harvest. Leaf and flower phenology were measured, and the allometric traits of shoots and buds were monitored over the crop cycle. We hand-collected the fruits of each plant to determine fruit attributes and biomass.Key ResultsDuring the harvesting year, the leafing and flowering of V. angustifolium occurred earlier than that of V. myrtilloides. This difference was related to the allometric characteristics of the buds due to differences in carbon partitioning by the plants during the pruning year. Through structural equation modelling, we identified that the earlier leafing in V. angustifolium was related to a lower leaf bud number, while earlier flowering was linked to a lower number of flowers per bud. Despite differences in reproductive allometric traits, vegetative biomass still determined reproductive biomass in a log–log scale model.ConclusionsGrowing buds are competing sinks for non-structural carbohydrates. Their differences in both number and characteristics (e.g. number of flowers per bud) influence levels of fruit production and explain some of the phenological differences observed between the two Vaccinium species. For similar above-ground biomass, both Vaccinium species had similar reproductive outputs in terms of fruit biomass, despite differences in reproductive traits such as fruit size and number.  相似文献   

5.
Summary Branch sampling of branch diameter and fruit crop on 22 species of Barbadian trees and shrubs provided sufficient data to build regressions between plant size and fruit crop weight. Orchard plants bear much more fruit than wild, feral or garden plants of similar size, but this difference disappears in multiple regression of fruit crop weight (F in g, fresh mass) on branch or stem diameter (D in cm) and individual fruit weight (W in g): F=22D1.2 W0.57. This explains 89% of the variation in F and successfully predicts crop weight for wild tropical and temperate trees and shrubs, but underestimated the crops on commercial, temperate, fruit trees by an order of magnitude. Comparisons of crop weight for feral, wild, and garden plants (Ff) using a simple regression Ff=47D1.9 show that crop weight is a minor load relative to branch weight for larger branches. Although fruit crops represent a declining proportion of total plant weight as plants become larger, the crops become larger relative to leaf and twig weight and in this sense, reproductive investment increases in larger plants. Finally, our equations, combined with the self-thinning rule, suggest that stands of large species of fruit plants produce more fruit per unit of land area than stands of small ones.  相似文献   

6.
The influence of alternate bearing on nutrient utilization and total tree nutrient content was investigated in mature pistachio (Pistacia vera L. cv Kerman trees). Removal of N, P and Zn in fruit and abscised leaves of cropping (‘on’) trees averaged 5, 6, and 2 times, respectively, the removal in abscised leaflets of the non-fruiting, ‘off’ year trees. One hundred and thirty-five kg N, 131 kg K, 86 kg Ca, 39 kg Mg and 18 kg P per hectare were removed in fruits and abscised leaves in ‘on’ year trees. Tree nutrient contents and, presumably, the size of nutrient storage pools in dormant trees varied between ‘on’ and ‘off’ years. There was 22% and 14% more N and P, respectively, in dormant trees following ‘off’ than ‘on’ years. The greater N and P accumulation in ‘off’ year trees is depleted in support of the large fruit demand for N and P during ‘on’ years. In contrast to N and P, there was greater K and Ca accumulation in perennial tree parts during ‘on’ years than during ‘off’ years. The greater K accumulation in perennial tree parts and approximately 30% greater removal of K in annual organs during ‘on’ than ‘off’ years suggests that K uptake could be 4 times higher in ‘on’ year trees than in (non-cropping), ‘off’ year trees.  相似文献   

7.
8.
Genetic influences on the timing of puberty in mice   总被引:4,自引:0,他引:4  
Genetic influences on the timing of three pubertal events--vaginal opening, first vaginal cornification, and onset of cyclicity--were studied in C57BL/6J, DBA/2J, and C3H/HeJ mice and in two F1 hybrid strains (B6D2F1 and B6C3HF1). Marked genotypic differences were found. Among inbred strains, differences in the onset of vaginal opening and first vaginal cornification (C3H less than DBA less than C57) did not parallel those for the onset of cyclicity (C3H much greater than DBA = C57). Compared to parental strains, F1 hybrid strains were intermediate for times of vaginal opening and first vaginal cornification, consistent with the model in which the genetic effects on the timing of these events are additive. By contrast, onset of cyclicity occurred significantly earlier in the F1 hybrids than in their parent strains, indicating heterosis for one or more genes specifying this event. Body weights also differed among the genotypes from weaning onward, but these differences were only partially correlated with the differences in the timing of the pubertal events. Thus, genetic influences other than those affecting body weight contribute to the differential timing of pubertal events in these mouse strains. These results reveal marked genetic variation in the timing of puberty, and indicate that the set of genes specifying the timing of vaginal opening and first vaginal cornification differs from those specifying the onset of cyclicity.  相似文献   

9.
为明确苦瓜的果实和种子的适宜采收时期,采用"翠中翠"苦瓜为研究对象,对苦瓜果实发育过程中的可溶性蛋白、总可溶性糖、维生素C的含量及种子生活力的变化进行动态监测。结果显示:(1)花后第14天至第26天,随着果实的迅速膨大,可溶性蛋白、总可溶性糖及维生素C含量也迅速增长;(2)种子干物质迅速积累,含水量迅速下降,种子生活力迅速提高,至花后第22天至第26天,种子生活力基本稳定。  相似文献   

10.
Question: Do soil water content and/or soil nitrogen (N) content and/or soil phosphorus (P) content affect the biomass of Vaccinium myrtillus and V. vitis‐idaea in a sub‐alpine heath? Location: Dolomites, northern Italy, 1800 m a.s.l. Methods: We determined above‐ground and below‐ground biomass of the shrubs at three sites, each on a different substrate type. At each site, we determined soil N‐ and P‐contents. We also determined leaf water potential (Psi;1), N‐ and P‐concentrations in plant tissues and litter, as well as δ13C and δ15N in mature leaves. Results: V. myrtillus biomass was highest at the silicate site, V. vitis‐idaea biomass was highest at the carbonate site. Both shrubs had low biomass at the peat site, possibly due to a toxic effect of waterlogging in wet soils. For both species, pre‐dawn Psi;1 indicated optimal hydration and midday Psi;1 did not show any sign of water stress. Water use efficiency (WUE) did not differ among sites for any species. Whole‐plant nutrient concentrations showed that, with increasing biomass, N was diluted in V. myrtillus tissues while P was diluted in V. vitis‐idaea tissues. Foliar N‐concentration was higher overall for V. myrtillus. Foliar P‐concentration in V. myrtillus peaked at the silicate site. Foliar N : P ratios suggested that V. myrtillus was primarily P‐limited and V. vitis‐idaea primarily N‐limited. Conclusions: Water content affected the distribution of the two shrubs in a similar way, higher P‐availability in the soil enhanced V. myrtillus rather than V. vitis‐idaea.  相似文献   

11.
Light is a pivotal environmental element capable of influencing multiple physiological processes across the entire plant life cycle. Over the course of their evolution, plants have developed several families of photoreceptors such as phytochromes, phototropins, ultraviolet (UV) resistance locus 8 and cryptochromes (crys), in order to sense light stimuli and respond to their changes. Numerous genetic studies have demonstrated that functional alterations to these photoreceptors cause a change in important agronomical traits. In particular, crys, which absorb UVA/blue light, can influence seed germination, flowering induction, plant architecture, fruit metabolic content and resistance to biotic and abiotic stresses. In the years to come, the rising temperatures and alterations to precipitation patterns generated by climate change will present a dramatic challenge for our agricultural system, with its few varieties characterized by a narrow genetic pool derived from artificial selection. Here, we review the main roles of crys in determining important agronomic traits in crops, we discuss the opportunities of using these photoreceptors as genetic targets for tuning plant physiological responses to environmental change, and the molecular strategies used so far to manipulate this family of photoreceptors.  相似文献   

12.
Sternberg  Marcelo  Shoshany  Maxim 《Plant Ecology》2001,157(2):173-181
Thisstudy investigated the variation along basipetal gradients of the relationshipsbetween the foliage/wood allocation ratios of biomass and of water content, inMediterranean trees and shrubs, at two different locations along a climaticgradient. Understanding of the biomass allocation and water relations inMediterranean trees and shrubs provides useful information on growth patternsofthese species, and on resource dynamics of these plant communities. Twoexperimental sites were selected along a climatological transect that runs fromthe foothills of the Judean Hills to the northern Negev desert in Israel. Ateach site, 16 quadrats of 10 × 10 m (eight on south-facingslopes and eight on north-facing slopes) were marked. The aboveground biomassofdominant tree and shrub species were estimated. Main branches of trees andshrubs were cut, their foliage and wood biomass were separately weighed, andtheir respective water contents were determined. The species studied includedthe evergreen sclerophylls, Quercus calliprinos, Phillyrealatifolia and Pistacia lentiscus, and thesemi-deciduous species, Cistus creticus, Coridothymuscapitatus and Sarcopoterium spinosum. Theresults indicated that the foliage/wood ratio decreased from the periphery ofthe crown to the interior of the trees and shrubs: foliage biomass and waterwere mainly limited to the top 30 cm of the crown in all studiedspecies. Leaves had higher relative water contents than woody tissues in theupper part of the crown. However; when the whole tree or shrub was considered,the relative water content was found to be mostly allocated to the woodystructures. The results are discussed in terms of biomass allocation in variouslife forms of the eastern-Mediterranean plant communities and how they areaffected by slope aspect and climatic conditions.  相似文献   

13.
Morphology and physiology of fruit and seed development were compared in Rhus aromatica and R. glabra (Anacardiaceae), both of which produce drupes with water-impermeable endocarps. Phenology of flowering/fruiting of the two species at the study site was separated by ∼2 mo. However, they were similar in the timetable and pattern of fruit and seed development; it took ∼2 mo and ∼1.5 mo for flowers of Rhus aromatica and R. glabra, respectively, to develop into mature drupes. The single sigmoidal growth curve for increase in fruit size and in dry mass of these two species differs from the double-sigmoidal one described for typical commercial drupes such as peach and plum. Order of attainment of maximum size was fruit and endocarp (same time), seed coat, and embryo. By the time fruits turned red, the embryo had reached full size and become germinable; moisture content of seed plus endocarp had decreased to ∼40%. The endocarp was the last fruit component to reach physiological maturity, which coincided with development of its impermeability and a seed plus endocarp moisture content of <10%. At this time, ∼50, 37, and 13% of the dry mass of the drupe was allocated to the exocarp plus mesocarp unit, endocarp, and seed, respectively. The time course of fruit and seed development in these two species is much faster than that reported for other Anacardiaceae, including Rhus lancea, Protorhus, and Pistacia.  相似文献   

14.
Dispersal within metacommunities can play a major role in species persistence by promoting asynchrony between communities. Understanding this role is crucial both for explaining species coexistence and managing landscapes that are increasingly fragmented by human activities. Here, we demonstrate that spatial patterning of dispersal connections can drastically alter both the tendency toward asynchrony and the effect of asynchrony on metacommunity dynamics commonly used to infer the potential for persistence. We also demonstrate that changes in dispersal connections in strictly homogeneous predator-prey metacommunities can generate an extremely rich variety of dynamics even when previously investigated properties of connectivity such as the magnitude and distribution of dispersal among patches are held constant. Furthermore, the dynamics we observe depend strongly on initial conditions. Our results illustrate the effectiveness of measures of spatial structure for predicting asynchrony and its effects on community dynamics, providing a deeper understanding of the relationship between spatial structure and species persistence in metacommunities.  相似文献   

15.
Fruit trees and shrubs dominate the edible flora of Africa. Does their geographic distribution differ significantly from that of the woody flora in general? Based on analyses of macro-scale geographic variations in the species richness (hereinafter SR) of southern Africa’s trees and shrubs, there is a west-to-east trend of increasing edible-fruit-providing SR that is similar to that of woody plants as a whole and in accord with changes in climate and vegetation. Distinct from this pattern, the percentage of edible fruit-providing species increases northwards and towards the interior of Africa, with an unexpected broad subcontinental zone of relatively high percentages of edible fruit species separating rich nutritional resource areas (high edible SR) from nutritional deserts (low edible SR). This is consistent with humans and other wide-ranging vertebrates (e.g., elephants) dispersing edible fruit species into normally less than ideal (nutritional) environments during cyclical and/or episodic periods of wetter climate.  相似文献   

16.
The study of mammalian corticogenesis has revealed a critical role for Polycomb group (PcG) factors in timing the execution of developmental choices. Meanwhile, the study of post-translational modifications of PcG factors marks a symmetrical point, namely that the activity of PcG proteins is itself timed in a manner that links progression through the cell cycle to targeting of downstream genes. Finally, in a third symmetrical twist, the studies that dissect the timing of neural fate by Polycomb are also uncovering the importance of timing in the experimental mutation, since ablation of the same PcG member at different developmental stages yields dramatically different results. Here, I weave together these three lines of evidence and develop a unifying model that clarifies the dynamics of Polycomb function in neural development and defines the salient challenges ahead.  相似文献   

17.
Question: Do shrubs influence the spatial pattern of soil seed banks in herbaceous vegetation and are these effects influenced by wind direction, sampling position (windward vs leeward sides of the shrub) and distance from the shrub? Location: Horqin desert in eastern Inner Mongolia, China. Methods: A pioneer shrub, Artemisia halodendron, occurring in a mobile sandy habitat was used as a case study. Species composition and abundance of the seed bank and established herbaceous vegetation around six target shrubs were sampled along transects aligned to the four main wind directions and at 0.5, 1, 2, 3, 4.5 and 6 m from the shrub base on both windward and leeward sides of a transect. Results: The presence of shrubs significantly modified the spatial pattern of seed deposition, but effects varied with wind direction, sampling position and distance from the shrub. More seeds were deposited on the leeward side than on the windward sides in all four transects, especially on transects with the most prevailing wind directions. Shrubs also caused a marked variation in seed deposition across sampling locations; this effect was more pronounced on the leeward side of transects with the most prevailing wind directions, suggesting the mean range of the shrub's influence is within ca. 2 m. Conclusions: The study shows clear evidence of shrubs as a source of spatial heterogeneity in seed availability in the herbaceous layer. Shrub presence effects were strongly influenced by complex interactions between wind direction, sampling position, and distance from the shrub.  相似文献   

18.
Whether and how the timing of extreme events affects the direction and magnitude of legacy effects on tree growth is poorly understood. In this study, we use a global database of Ring‐Width Index (RWI) from 2,500 sites to examine the impact and legacy effects (the departure of observed RWI from expected RWI) of extreme drought events during 1948–2008, with a particular focus on the influence of drought timing. We assessed the recovery of stem radial growth in the years following severe drought events with separate groupings designed to characterize the timing of the drought. We found that legacies from extreme droughts during the dry season (DS droughts) lasted longer and had larger impacts in each of the 3 years post drought than those from extreme droughts during the wet season (WS droughts). At the global scale, the average integrated legacy from DS droughts (0.18) was about nine times that from WS droughts (0.02). Site‐level comparisons also suggest stronger negative impacts or weaker positive impacts of DS droughts on tree growth than WS droughts. Our results, therefore, highlight that the timing of drought is a crucial factor determining drought impacts on tree recovery. Further increases in baseline aridity could therefore exacerbate the impact of punctuated droughts on terrestrial ecosystems.  相似文献   

19.
Although diversity of fruit/seed colouration has received a great amount of attention since Darwin, little is known about its role in eating preferences in humans. We have determined that humans prefer certain fruits/seeds over others and that their willingness to eat them has been significantly influenced by the perceived aesthetic of the presented fruits and seeds. Participants were unable to discriminate between edible and poisonous fruits/ seeds based on their colour. Females rated all the groups of fruits/seeds as more attractive than males with this supporting the role of females in picking fruit in our evolutionary past. Red fruits were rated as more attractive than green or brown fruits. The results support the idea that fruit/seed colouration plays an important role in plant--disperser coevolution and that aesthetic judgment in humans have been shaped by natural selection.  相似文献   

20.
1. The relationship between plant morphology and the senses used by dispersal agents to find fruit was examined. 'Flagellichory' (fruit borne on pendulous structures), a costly morphology associated with dispersal by bats, is focused on.
2. Using Gurania spinulosa , a flagellichorous vine, and its major dispersal agent, Phyllostomus hastatus , the hypothesis was tested that flagellichory increases the conspicuousness of fruit to bats that use echolocation to find fruit.
3. The responses of wild-caught P. hastatus to various fruiting branch morphologies and fruit odour were recorded. Phyllostomus hastatus used echolocation rather than olfaction to detect fruit, and consistently chose fruit displayed on pendulous leafless branches, ignoring fruit held among leaves on horizontal branches.
4. By comparing echolocation signals with the distance between fruiting branches of G. spinulosa and surrounding vegetation, it was shown that pendulous fruiting branches present clear, clutter-free targets that can be detected by echolocating bats. This is the first demonstration of neotropical frugivorous bats using echolocation to find fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号