首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Understanding intraspecific variation in traits that determine fitness is foundational to a trait-based approach to plant ecology. This study examined fitness components during 3 years of reproduction in a polycarpic perennial bunchgrass (Tridens flavus) native to eastern North America that could prove useful in revegetating disturbed habitats. Plants were cultured from seeds of five populations in central New Jersey, USA, and planted in July 2015 into two undisturbed gardens 30 m apart that differed in availability of sunlight and soil moisture. Following flowering in 2016, 2017 and 2018, the number of panicles, seed set, seed number (fecundity) and seed mass were recorded. Final dry aboveground mass was determined. Seed set was high (>70%) in all populations and gardens. Panicle production varied with population and was strongly correlated with fecundity, but populations were not differentiated for other fitness components. Panicle and seed number were greatest in the drier garden with greater daily light availability. Mass per seed was reduced as more seeds were produced in the second and third year but showed low variation compared to fecundity. Vegetative mass was the most important variable determining fecundity. Close proximity of sampled sites and an outcrossed, wind-pollinated mating strategy may have precluded detection of differentiation among T. flavus populations in the common gardens. High seed set, prodigious seed production on multiple panicles and high seed germinability and overwinter survival account for the occurrence of large populations of this native grass along roadsides and within successional fields and young woodlands throughout the region.  相似文献   

2.
Quantifying intraspecific demographic variation provides a powerful tool for exploring the diversity and evolution of life histories. We investigate how habitat-specific demographic variation and the production of multiple offspring types affect the population dynamics and evolution of delayed reproduction in a clonal perennial herb with monocarpic ramets (white hellebore). In this species, flowering ramets produce both seeds and asexual offspring. Data on ramet demography are used to parameterize integral projection models, which allow the effects of habitat-specific demographic variation and reproductive mode on population dynamics to be quantified. We then use the evolutionarily stable strategy (ESS) approach to predict the flowering strategy-the relationship between flowering probability and size. This approach is extended to allow offspring types to have different demographies and density-dependent responses. Our results demonstrate that the evolutionarily stable flowering strategies differ substantially among habitats and are in excellent agreement with the observed strategies. Reproductive mode, however, has little effect on the ESSs. Using analytical approximations, we show that flowering decisions are predominantly determined by the asymptotic size of individuals rather than variation in survival or size-fecundity relationships. We conclude that habitat is an important aspect of the selective environment and a significant factor in predicting the ESSs.  相似文献   

3.
? Premise of the study: We developed microsatellites for Panicum hallii for studies of gene flow, population structure, breeding experiments, and genetic mapping. ? Methods and Results: Next-generation (454) genomic sequence data were used to design markers. Eighteen robust markers were discovered, 15 of which were polymorphic across six accessions of P. hallii var. hallii. Fourteen of the markers cross-amplified in a P. capillare accession. For the 15 polymorphic markers, the total number of alleles per locus ranged from two to 26 (mean: 11.0) across six populations (11-19 individuals per population). Observed heterozygosity (mean: 0.031) was 13.7 times lower than the expected heterozygosity (mean: 0.426). ? Conclusions: The deficit of heterozygous individuals is consistent with P. hallii having a high rate of self-fertilization. These markers will be useful for studies in P. hallii and related species.  相似文献   

4.
Allometry for sexual size dimorphism (SSD) is common in animals, but how different evolutionary processes interact to determine allometry remains unclear. Among related species SSD (male : female) typically increases with average body size, resulting in slopes of less than 1 when female size is regressed on male size: an allometric relationship formalized as 'Rensch's rule' . Empirical studies show that taxa with male-biased SSD are more likely to satisfy Rensch's rule and that a taxon's mean SSD is negatively correlated with allometric slope, implicating sexual selection on male size as an important mechanism promoting allometry for SSD. I use body length (and life-history) data from 628 (259) populations of seven species of anadromous Pacific salmon and trout (Oncorhynchus spp.) to show that in this genus life-history variation appears to regulate patterns of allometry both within and between species. Although all seven species have intraspecific allometric slopes of less than 1, contrary to expectation slope is unrelated to species' mean SSD, but is instead negatively correlated with two life-history variables: the species' mean marine age and variation in marine age. Second, because differences in marine age among species render SSD and body size uncorrelated, the interspecific slope is isometric. Together, these results provide an example of how evolutionary divergence in life history among related species can affect patterns of allometry for SSD across taxonomic scales.  相似文献   

5.
6.
The aim of this study was to analyze and model how biomass is allocated to the leaves, stems, and roots of perennial grass (reed canary grass, Phalaris arundinacea L., hereafter RCG) under elevated temperature (ET) (+approx. 3 °C) and CO2 (approx. 700 μmol mol?1) and with variable groundwater levels (high to low water levels) in a boreal environment. For this purpose, RCG plants were grown in environmentally controlled chambers over two growing seasons (April–September of 2009 and 2010), and the plant organ biomass (leaves, stems, and roots) was measured seven times over the entire growing season. The results showed that biomass production was mainly allocated to the leaves (LMF) and stems (SMF) early in the growing season, to the stems in the middle of the growing season, and to the roots (RMF) later in the growing season. Compared to ambient conditions, ET treatments increased LMF and SMF, and decreased RMF over the growing season under well-water conditions. Under low groundwater level, ET treatments decreased LMF and increased RMF throughout the growing season, and increased SMF in early periods and then decreased later in the growing season. CO2 enrichment did not significantly affect the seasonal allocation pattern between plant organs. The effect of the groundwater level on biomass allocation was stronger than that of the climatic treatments. In conclusion, plant phenology controlled the seasonal course of biomass allocation in RCG and climatic treatments affected biomass allocation to each of the three plant organs, while the direction and extent of climate-related changes in biomass allocation depended on the availability of groundwater. The influence of groundwater level appeared to be crucial for the carbon gain regarding the production of RCG biomass for energy purpose and the concurrent sequestration of carbon in soils under changing climate in the mire sites used to cultivate RCG.  相似文献   

7.
8.
Stefan Andersson 《Oecologia》1989,80(4):540-545
Summary Populations of the monocarpic plant Crepis tectorum were grown in a series of uniform environments to test the hypothesis that weedy populations are more r-selected than populations from a more natural habitat. Weedy populations exhibited a combination of r- and K-selected traits. The relatively rapid growth, the potential for a summer annual habit, and the relatively high fecundity that characterized at least one of the two weed populations studied were considered as r-selected traits favored in habitats of unpredictable duration. However, high levels of competition from other weedy species or from the crop in arable fields may explain at least some presumably K-selected traits observed in the weedy populations, e.g. relatively large seeds and late flowering in the summer. Results indicated that stress due to abiotic factors (strong winds, desiccation and nutrient deficiency) has been a more important selective factor than r- or K-selection, in non-weedy populations from calcareous grasslands (alvars) on the Baltic islands.  相似文献   

9.
The effects of lateral shade and wind on stem allometry, whole-plant biomass allocation, and mechanical stability were examined for Abutilon theophrasti in a fully factorial glasshouse experiment. Lateral shade from neighboring plants increased stem height by 33% relative to control plants grown individually, despite a decrease in plant dry mass. Intermittent wind decreased stem height by 18% in unshaded plants, but by only 3% in shaded plants. Surprisingly, both lateral shade and wind caused decreases in stem diameter, even with diameter controlled for height, resulting in low diameter?:?height ratios in wind-treated plants relative to untreated plants. Under shade, wind-treated plants had higher root allocation than untreated plants, which allowed wind-treated shade plants to compensate for a low diameter?:?height ratio. This did not occur in the absence of shade, where stem tissue density and root allocation of wind-treated plants did not exceed that of untreated plants. Nevertheless, wind-treated plants experienced low drag relative to untreated plants due to a lower leaf area. Consequently, stem deflections of wind-treated plants did not exceed those of untreated plants at any given windspeed. Our results document a complex interaction between shade and wind on plant morphology and suggest that the nature of this interaction is generally that lateral shade acts to reduce or eliminate thigmomorphogenic responses.  相似文献   

10.
Little is known about the potential for coexistence between native and non-native plants after large-scale biological invasions. Using the example of native perennial bunchgrasses and non-native annual grasses in California grasslands, we sought to determine the effects of interference from non-native grasses on the different life stages of the native perennial bunchgrass Nassella pulchra. Further, we asked whether N. pulchra interferes with non-native annual grasses, and whether competition for water is an important component of these interspecific interactions in this water-limited system. In a series of field and greenhouse experiments employing neighbor removals and additions of water, we found that seedling recruitment of N. pulchra was strongly seed-limited. In both field and greenhouse, natural recruitment of N. pulchra seedlings from grassland soil was extremely low. In field plots where we added seeds, addition of water to field plots increased density of N. pulchra seedlings by 88% and increased total aboveground N. pulchra seedling biomass by almost 90%, suggesting that water was the primary limiting resource. In the greenhouse, simulated drought early in the growing season had a greater negative effect on the biomass of annual seedlings than on the seedlings of N. pulchra. In the field, presence of annuals reduced growth and seed production of all sizes of N. pulchra, and these effects did not decrease as N. pulchra individuals increased in size. These negative effects appeared to be due to competition for water, because N. pulchra plants showed less negative pre-dawn leaf water potentials when annual neighbors were removed. Also, simply adding water caused the same increases in aboveground biomass and seed production of N. pulchra plants as removing all annual neighbors. We found no evidence that established N. pulchra plants were able to suppress non-native annual grasses. Removing large N. pulchra individuals did not affect peak biomass per unit area of annuals. We conclude that effects of interference from non native annuals are important through all life stages of the native perennial N. pulchra. Our results suggest that persistence of native bunchgrasses may be enhanced by greater mortality of annual than perennial seedlings during drought, and possibly by reduced competition for water in wet years because of increased resource availability. Received: 12 November 1998 / Accepted: 4 August 1999  相似文献   

11.
There is a trade-off between nitrogen (N) allocation to photosynthesis and to defence. Invasive species may reduce N allocation to defence because of the absence of natural enemies. Thus, I hypothesised that invasive species may allocate a higher fraction of total leaf N to photosynthesis and have higher light-saturated photosynthetic rate ( P max) and photosynthetic N-use efficiency (PNUE) than closely related native species. To test these hypotheses, invasive Eupatorium adenophorum and native E.   chinense and E.   heterophyllum were compared in a limestone shrub. Unlike expectation, the invader did not allocate a higher fraction of leaf N to photosynthesis than the natives. However, it was more efficient in photosynthetic N partitioning than the natives. It partitioned a higher fraction of the photosynthetic N to carboxylation and showed higher use efficiency of the photosynthetic N, while the natives partitioned a higher fraction of the photosynthetic N to light-harvesting components. Total leaf N content was not significantly different among the three studied invasive and native species. For the invader, the higher fraction of leaf N allocated to carboxylation resulted in the higher N content in carboxylation and in both carboxylation and bioenergetics, which led to higher P max, and therefore to higher PNUE, water-use efficiency, respiration efficiency and apparent quantum yield. These physiological advantages of the invader and its higher leaf area ratio may contribute to its invasiveness.  相似文献   

12.
Cadiz  Geofe O.  Cawson  Jane G.  Duff  Thomas J.  Penman  Trent D.  York  Alan  Farrell  Claire 《Plant Ecology》2021,222(8):877-895

Knowing the abundance of different plant species provides insights into the properties of vegetation communities, such as flammability. Therefore, a fundamental goal in ecology is identifying environmental conditions affecting the abundance of plant species across landscapes. Water and light are important environmental moderators of plant growth, and by extension, abundance. In the context of understanding forest flammability, the abundance of a flammable plant species in terms of its cover or biomass can shape the flammability of the whole vegetation community. We conducted a glasshouse experiment to determine the impact of drought and shade on growth, biomass allocation and leaf morphology of forest wiregrass Tetrarrhena juncea R.Br., a rhizomatous perennial grass. When it is abundant, this species is known to contribute substantially to the flammability of eucalypt forest understories (via both ignitability and combustibility). Contrasting hypotheses in the literature predict that drought can have a weaker, stronger, or independent (uncoupled) impact on plant growth when light is limiting. We used a randomized complete block design with ten treatments from the combination of two water levels (drought, well-watered) and five light levels (100%, 80%, 60%, 40%, 20%). Drought and shade were found to have independent effects on wiregrass growth, biomass allocation, and leaf morphology, supporting the uncoupled hypothesis. Growth showed greater plasticity in response to drought, while biomass allocation and leaf morphology showed greater plasticity in response to shade. Our results suggest that wiregrass is more likely to be abundant in terms of its cover and biomass when water is not limiting. Under these conditions, the increased wiregrass abundance could create a window of increased flammability for the forest ecosystem.

  相似文献   

13.
Intermediate wheatgrass (Thinopyrum intermedium) is a perennial grass that is being domesticated and improved for use as a grain crop. As a perennial grain crop, intermediate wheatgrass has the potential to produce economically viable, food‐grade grain while providing environmental benefits such as reduced erosion and nitrate leaching. To guide agronomic activities for this new crop, more information on intermediate wheatgrass growth and development is needed. We sampled plants every 3–5 days throughout the growing season at three environments to measure growth and development in response to accumulating growing degree days (GDD). A numerical growth index was used to quantify morphological development. Growth index, plant height, biomass, height of the tallest node, and biomass partitioning to leaf, stem, and inflorescence were modelled as a function of GDD. We predicted dates (in GDD and day of the year) for critical morphological events as they relate to grain crop production using model equations. The fraction of total biomass allocated to leaves decreased and stems increased in response to GDD, and both components represented equal proportions of aboveground biomass at plant maturity. Growth and development was similar across environments, but variation in yield components (e.g., 50 seed weight, seed mass inflorescence?1) was observed. Our results provide the first quantification of growth and development of intermediate wheatgrass, and have application to growers seeking to determine optimal timing of agronomic practices, as well as crop modellers working to integrate new crops into simulation models. As intermediate wheatgrass expands as a perennial grain crop, growth and development should be measured in a broader range of temperature and precipitation conditions.  相似文献   

14.
15.
Changes in sward growth above ground by shade is a controversialsubject for field experimentation because the differential allocationof carbon (C) to shoots and roots is difficult to measure. Inthis experiment the effect of three levels of irradiance (100%,56% and 33% of full sunlight) on C and nitrogen (N) allocationin Dichanthium aristatum were studied under well-watered andwell-fertilized conditions. Dry matter accumulation, weightratio per organ and N allocation indices were studied duringtwo cycles of growth, after planting and after cutting. Shadehad no effect on the C and N influxes into the whole plant,showing that the N absorption is regulated by the C assimilation.However, C, and principally N, were preferentially allocatedto the laminae under reduced irradiance. Under 100% and 56%of full sunlight, more N was allocated to the stubble component.This situation was reversed in the lowest radiation level, indicatingthat N reserves, and not exclusively C reserves, may limit theregrowth of this perennial grass when growing under high levelsof shade. The higher shoot:root ratio under shade shows thedisadvantage in the use of radiation use efficiency calculatedfrom aerial biomass data when comparing differents levels ofshade. Key words: Growth, shading, reserves, C4 species  相似文献   

16.
Size-dependent or allometric relationships between reproductive and vegetative size are extremely common in plant populations. Reproductive allometry where plant size differences are due to environmental variability has been interpreted both as an adaptive strategy of plant growth and allocation, and as the product of fixed developmental constraints. Patterns of development are crucial in defining reproductive allometry but development is not fixed across individuals. For example, environmental adversity (e.g. resource impoverishment) tends to favor reproduction at relatively small sizes – an adaptive response to environmental adversity. While small individuals may have lower reproductive output than large individuals, all plants should maximize their reproductive output and relative allocation to reproduction may be constant across sizes. Thus, where individual plants within a population initiate reproduction at different sizes, no significant reproductive allometry is an appropriate null expectation. Reproductive allometry occurs in plant populations where initiating reproduction at small sizes yields relatively high or low reproductive size at final development. Both of these outcomes are common in plant populations. Our interpretation of reproductive allometry combines previous adaptive and developmental constraint interpretations, and is the first to successfully explain the range of relationships in plant populations where relative allocation has been observed to increase, decrease or remain constant will increasing plant size.  相似文献   

17.
* BACKGROUND AND AIMS: The use of perennial crops could contribute to increase agricultural sustainability. However, almost all of the major grain crops are herbaceous annuals and opportunities to replace them with more long-lived perennials have been poorly explored. This follows the presumption that the perennial life cycle is associated with a lower potential yield, due to a reduced allocation of biomass to grains. The hypothesis was tested that allocation to perpetuation organs in the perennial L. mendocina would not be directly related to a lower allocation to seeds. * METHODS: Two field experiments were carried on with the annual Lesquerella fendleri and the iteroparous perennial L. mendocina, two promising oil-seed crops for low-productivity environments, subjected to different water and nitrogen availability. * KEY RESULTS: Seed biomass allocation was similar for both species, and unresponsive to water and nitrogen availability. Greater root and vegetative shoot allocation in the perennial was counterbalanced by a lower allocation to other reproductive structures compared with the annual Lesquerella. Allometric relationships revealed that allocation differences between the annual and the perennial increased linearly with plant size. The general allocation patterns for nitrogen did not differ from those of biomass. However, nitrogen concentrations were higher in the vegetative shoot and root of L. mendocina than of L. fendleri but remained stable in seeds of both species. * CONCLUSIONS: It is concluded that vegetative organs are more hierarchically important sinks in L. mendocina than in the annual L. fendleri, but without disadvantages in seed hierarchy.  相似文献   

18.
To investigate the connection between demographic strategies and reproductive strategies of a polycarpic perennial herb, Trillium apetalon Makino, we conducted three studies. First, we monitored the fate of individuals and the flowering behavior of T. apetalon for 12 years and used a transition matrix model to analyze the demography of the population. The analysis revealed that it takes a long time for individuals to go through one-leaf stage in juveniles. Elasticity analysis showed that the survival of flowering individuals was a decisive factor in the dynamics of the population. Furthermore, we found that the average remaining lifetime of flowering individuals was high relative to the other three stages. Second, to elucidate the demographic consequences of organ preformation, we investigated the development of flower buds for future years. We observed three to six flower buds per rhizome, suggesting that flower buds for the next 3–6 years were ready in advance in this plant. Third, the results of breeding experiments clarified that although this species appears to have a substantial capacity for both inbreeding and outbreeding, inbreeding plays an important role in seed production, and that crossing experiments (direct cross-pollination and self pollination) yielded similar seed-ovule ratios to those obtained from open-pollinated individuals. Our three studies suggest that the adult survival and continuous flowering strategies of T. apetalon obtained from demographic analysis are closely interlinked with breeding systems and preformation of flower buds.  相似文献   

19.
缙云山2种禾草种群生殖配置的比较研究   总被引:4,自引:0,他引:4  
利用样方法对生长于重庆缙云山不同生境条件下的2种禾草--白茅[Imperata cylindrica (L.) Beauv.]和淡竹叶(Lophatherum gracile Brongn.)的生物量配置格局进行了研究.结果表明,白茅种群在整个生长期内各构件生物量配置格局变化不大,其中对根状茎的配置比例最高,达到70.18%,有性生殖的生物量分配比例为4.51%,没有秆构件;淡竹叶种群在生长季内生物量配置格局发生较大变化,营养生长期、花期和黄熟期根构件的生物量分别占总生物量的77.33%、36.39%和48.66%,叶构件则为19.35%、45.42%和27.17%,有性生殖的生物量分配比例为11.11%.与白茅相比,淡竹叶种群秆构件明显.二者在生物量配置格局上存在显著差异,反映了二者对各自生活环境的适应特征.  相似文献   

20.
We measured the reproductive output of Takydromus septentrionalis collected over 5 years between 1997 and 2005 to test the hypothesis that reproductive females should allocate an optimal fraction of accessible resources in a particular clutch and to individual eggs. Females laid 1–7 clutches per breeding season, with large females producing more, as well as larger clutches, than did small females. Clutch size, clutch mass, annual fecundity, and annual reproductive output were all positively related to female size (snout–vent length). Females switched from producing more, but smaller eggs in the first clutch to fewer, but larger eggs in the subsequent clutches. The mass-specific clutch mass was greater in the first clutch than in the subsequent clutches, but it did not differ among the subsequent clutches. Post-oviposition body mass, clutch size, and egg size showed differing degrees of annual variation, but clutch mass of either the first or the second clutch remained unchanged across the sampling years. The regression line describing the size–number trade-off was higher in the subsequent clutch than in the first clutch, but neither the line for first clutch, nor the line for the second clutch varied among years. Reproduction retarded growth more markedly in small females than in large ones. Our data show that: (1) trade-offs between size and number of eggs and between reproduction and growth (and thus, future reproduction) are evident in T. septentrionalis ; (2) females allocate an optimal fraction of accessible resources in current reproduction and to individual eggs; and (3) seasonal shifts in reproductive output and egg size are determined ultimately by natural selection.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 315–324.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号