首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the effects of reclamation treatments on plant community development is an important step in setting realistic indicators and targets for reclamation of upland oil sands sites to forest ecosystems. We examine trends in cover, richness, evenness, and community composition for four cover soil types (clay over overburden, clay over tailings sand, peat‐mineral mix over overburden, and peat‐mineral mix over tailings sand) and natural boreal forests over a 20 year period in the mineable oil sands region of northern Alberta, Canada. Tree, shrub, and nonvascular plant species cover showed similar increases over time for all reclamation treatments, with corresponding declines in forb and graminoid cover with time. These trends resemble those in the natural boreal forests of the region and the trajectory of community development for the reclamation treatments appears to follow typical early successional trends for boreal forests. Species richness and diversity of natural forest differed significantly from reclamation treatments. Nonmetric multidimensional scaling ordination and multi‐response permutation procedure revealed that species composition was not affected by reclamation treatment but clearly differed from natural forest. Analysis of species co‐occurrence indicated random plant community assembly following reclamation, in contrast to a higher proportion of nonrandom plant community assembly in natural forests. Thus, reclaimed plant communities appear to be unstructured through year 20 and assembly is still in progress on these reclaimed sites.  相似文献   

2.
Soil stockpiles are essential to the reclamation of large‐ and small‐scale mining and other industrial sites. However, stockpiling soils can lead to the degradation of seed banks. This study examines the diversity, composition, depth of seed storage, and relationships between the aboveground and seed bank plant communities in stockpiles and compares them to the nearby boreal forest. The seed bank and aboveground vegetation sampled at eight stockpiles and six mature forest sites were near Fort McMurray (57.337°N, 111.755°W) and Cold Lake (54.695°N, 110.730°W), Alberta, Canada. Seed bank samples were taken from the forest floor (LFH) and depths of 0–5, 5–10, 10–20, 20–30, >50 cm. Aboveground vegetation cover was also estimated at these locations. The seed bank composition was determined using the seedling emergence method in a greenhouse. Stockpile seed banks had higher seedling abundance and species richness than nearby forested sites but were dominated by grasses and non‐native forbs. Most seeds germinated from the surface layer, with 92% of seeds germinating from the LFH layers in the forested sites, and 68% from the 0 to 5 cm layer in the stockpiles. Mature forest sites had more similar aboveground and seed bank communities than the stockpiles. Overall, integrating information on seed bank and aboveground plant communities would improve reclamation decisions, rather than relying on aboveground vegetation alone.  相似文献   

3.
Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for upland reclamation post open-pit oil sands mining in northern Alberta, Canada. Coarse woody debris (CWD) can be used to regulate soil temperature and water content, to increase organic matter content, and to create microsites for the establishment of microorganisms and vegetation in upland reclamation. We studied the effects of CWD on soil microbial community level physiological profile (CLPP) and soil enzyme activities in FMM and PMM in a reclaimed landscape in the oil sands. This experiment was conducted with a 2 (FMM vs PMM) × 2 (near CWD vs away from CWD) factorial design with 6 replications. The study plots were established with Populus tremuloides (trembling aspen) CWD placed on each plot between November 2007 and February 2008. Soil samples were collected within 5 cm from CWD and more than 100 cm away from CWD in July, August and September 2013 and 2014. Microbial biomass was greater (p<0.05) in FMM than in PMM, in July, and August 2013 and July 2014, and greater (p<0.05) near CWD than away from CWD in FMM in July and August samplings. Soil microbial CLPP differed between FMM and PMM (p<0.01) according to a principal component analysis and CWD changed microbial CLPP in FMM (p<0.05) but not in PMM. Coarse woody debris increased microbial community functional diversity (average well color development in Biolog Ecoplates) in both cover soils (p<0.05) in August and September 2014. Carbon degrading soil enzyme activities were greater in FMM than in PMM (p<0.05) regardless of distance from CWD but were not affected by CWD. Greater microbial biomass and enzyme activities in FMM than in PMM will increase organic matter decomposition and nutrient cycling, improving plant growth. Enhanced microbial community functional diversity by CWD application in upland reclamation has implications for accelerating upland reclamation after oil sands mining.  相似文献   

4.
Mining in the arctic amplifies restoration challenges due to inherent environmental conditions by removing soil, vegetation, and the propagule bank, adding coarse textured wastes with low water holding capacity and nutrients, and introducing salt and metal contamination. Short‐term reclamation focuses on rebuilding soil and providing rapid native plant cover for erosion control, supporting longer term reestablishment of ecological processes for sustainable tundra communities that provide essential wildlife habitat. This study evaluated methods to restore soil and plant communities 5 years after implementation of treatments at a diamond mine in the Canadian arctic. Five substrates including mine waste materials (processed kimberlite, glacial till, gravel, and mixes), four amendments (inorganic fertilizer, salvaged soil, sewage sludge, and water treatment sludge), five native species seed mixes and natural recovery were investigated. Soil and plant response were assessed annually. Soil chemistry was ameliorated with time. Chromium, cobalt, and nickel concentrations in processed kimberlite remained high and potentially toxic to plants. Adding fine textured materials such as glacial till to mine wastes improved nutrient and water retention, which in turn enhanced revegetation. Sewage and inorganic fertilizer increased available nitrogen and phosphorus, plant density and cover. Soil amendment increased species richness. Seeding was essential to establish a vegetation cover. After 5 years, seed mix composition and diversity had no effect on plant community development; soil and plant community properties among treatments changed considerably, providing evidence that restoration in the arctic is dynamic yet slow and success cannot be determined in the short term.  相似文献   

5.
Reclamation of highly disturbed lands typically includes establishing fast‐growing, non‐native plants to achieve rapid ground cover for erosion control. Establishing native plant communities could achieve ecosystem functions beyond soil erosion, such as providing wildlife habitat. Pipelines, or other disturbed corridors through a landscape, present unique challenges for establishing native plant communities given the heterogeneity of soil environments and invasive plant propagule pressure. We created two structural equation models to address multiple related hypotheses about the influence of soil pH on plant community composition (current diversity and vegetative cover of the original restoration seed mix and background flora, and invasive plant density during mix establishment and current density) of a highly disturbed landscape corridor restored with native species. To test our hypotheses we conducted a plant survey on a gas pipeline crossing two state forests in the north‐central Appalachians that had been seeded with a native‐based mixture 8 years prior. Low soil pH was a strong predictor of density of the invasive annual plant, Microstegium vimineum, and had resulted in lower species diversity and cover of the seeded mix. Overall, our data provide evidence that native‐based grass and forb mixtures can establish and persist on a wide range of soil environments and thrive in competition with invasive plants in moderately acidic to neutral soils. Advancing knowledge on restoration methods using native species is essential to improving restoration practice norms to incorporate multifunctional ecological goals.  相似文献   

6.
Many efforts to restore disturbed landscapes seek to meet ecological goals over timescales from decades to centuries. It is thus crucial to know how different actions available to restoration practitioners may affect ecosystems in the long term, yet few such data exist. Here, we test the effects of seed and compost applications on plant community composition 9 years after their application, by taking advantage of a well‐controlled restoration experiment on a mountainside severely degraded by over 80 years of zinc smelting emissions. We asked whether plots have converged on similar plant communities regardless of initial seed and compost treatments, or if these initial treatments have given rise to lasting differences in whole plant communities or in the richness and abundance of native, exotic, and planted species. We found that compost types significantly affected plant communities 9 years later, but seed mix species composition did not. Observed differences in species richness and vegetative cover were negatively correlated, and both were related to the differences in plant communities associated with different compost types. These observed differences are due primarily to the number and abundance of species not in original seed mixes, of which notably many are native. Our results underscore the importance of soils in shaping the aboveground composition of ecosystems. Differences in soil characteristics can affect plant diversity and cover, which are both common restoration targets. Even in highly polluted and devegetated sites, compost and seed application can reinstate high vegetative cover and allow continued colonization of native species.  相似文献   

7.
Invasive plants can reduce plant diversity and abundance in native grassland communities; however, the effect on the native seed bank is less clear. The objective of this study was to assess the effects of invasion by the exotic grass old world bluestem (OWB; Bothriochloa spp.) on native aboveground plant species composition and seed bank diversity and abundance (i.e., cover, density). In this central Great Plains grassland, OWB invasion had differential effects on native diversity and abundance of both aboveground and seed bank plant communities. Native plant species diversity and cover showed a steep decline as OWB cover increased. No change in native seed density or richness was observed in response to OWB invasion, however, OWB seed density increased with increasing invasion, thus increasing total seed density. Our results indicate that as OWB invasion increases, the native plant community decreases in diversity and abundance. Although, no effect on native seed bank diversity and density was observed in this study, as native seeds are lost through a loss of native species in the plant communities, native seed bank diversity and density is expected to decline.  相似文献   

8.
Understanding how ecological networks are organised over the course of an organism's lifetime is crucial for predicting the dynamics of interacting populations and communities across temporal scales. However, most studies so far considered only one life history stage at a time, such as adult, when studying networks of interacting species. Therefore, knowledge about how multiple life history stages affect the development and stability of plant–plant association networks is lacking. We measured the understory adult plant community and the soil seed bank across a plant age gradient of the nurse shrub Retama sphaerocarpa in an arid ecosystem in Spain. Using a multilayer network approach, we built adult understory–nurse and seed bank–nurse networks and analysed how network nestedness, species’ role, and species specificity varied between them and with nurse plant age. We found that seed bank and adult understory networks changed depending on nurse plant age in two different ways. With increasing nurse plant age, adult understory networks became significantly more nested than seed bank networks. The nested architecture of seed bank networks was therefore a poor predictor of adult understory network nestedness. The contribution and specificity of species to network nestedness increased with increasing nurse plant age more in the adult understory than in seed bank networks, despite high species turnover. Our data show that life history and ontogeny affect the development of plant–plant association networks. Niche construction and environmental filtering along nurse ontogeny seem pivotal mechanisms structuring adult understory networks while the assembly of seed bank networks seems rather stochastic. We highlight the importance of mature plant communities for maintaining rare species populations and supporting the stability of ecological communities through time.  相似文献   

9.
研究了物种库限制与生态位限制在湖滨湿地植物分布格局形成过程中的相对重要性。在龙感湖湖滨湿地具有明显水位梯度的湿生植 物区、挺水植物区和沉水植物区采集种子库土样, 采用幼苗萌发法确定了不同水位区种子库的物种成分;并将不同水位区的种子库土样分别置于0、25和50cm3个水位下萌发和生长, 45和90d后比较不同取样区种子库在不同水位处理下所建立的植物群落的异同。结果表明, 不同取样区的种子库物种成分有显著差异, 沿水深梯度呈现明显的带状分布格局。水位处理实验表明, 0cm水位条件下的群落主要由湿生植物和挺水植物组成, 而25和50cm水位下只有沉水植物, 表明不同功能群的物种对水深有不同的耐受力, 生态位限制是决定湿地植物分布格局的关键因子。同时, 挺水植物区的种子库置于沉水条件下, 以及沉水植物区的种子库置于0cm水位下都只能形成极为简单的植物群落, 表明物种库限制对湿地植物群落的形成同样具有显著影响。研究表明, 湿地植物的群落构成与分布格局是由生态位限制和物种库限制共同决定的, 两者的相对重要性可能取决于水体的稳定性。  相似文献   

10.
Questions: The assembly of arable weed communities is the result of local filtering by agricultural management and crop competition. Therefore, soil seed banks can reflect the effects of long‐term cumulative field management and crop sequences on weed communities. Moreover, soil seed banks provide strong estimates of future weed problems but also of potential arable plant diversity and associated ecological functions. For this, we evaluated the effects of different long‐term farming systems under the same crop rotation sequence on the abundance, diversity and community assembly of weed seed bank, as well as on the functional diversity and composition. Location: DOK (biodynamic [D], bioorganic [O], conventional [K]) long‐term trial, Therwil, Switzerland. Methods: The effects of long‐term contrasted farming systems (i.e., biodynamic, organic, conventional, mineral and unfertilised systems) and last crop sown (i.e., wheat and maize) were evaluated on different indicators of species and functional diversity and composition of the weed soil seed bank. Results: The results showed significant influences of 40 years of contrasted farming systems on the diversity and composition of the seed bank, with higher diversities being found in unfertilised and organic farming systems, but also higher abundances than those found under conventional systems. Organic farming also allowed higher functional richness, dispersion and redundancy. Different farming systems triggered shifts in species and functional assemblies. Conclusions: The results highlight the importance of organic management for the maintenance of a diverse arable plant community and its functions. However, such results emphasise the need for appropriate yearly management to reduce the abundance of settled weediness and prevent affecting crop production. The farm management filtered community composition based on functional traits. Although the soil seed bank buffers the long‐term farming and crop sequence, the last crop sown and, thus, the yearly management were important determinants of seed bank composition.  相似文献   

11.
Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator‐mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co‐occurrence patterns to determine the role of pollinator‐mediated processes in structuring plant communities dominated by congeners. We surveyed three species‐rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co‐flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44–48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co‐occurrence. Together, it appears that pollinators influence community assemblage in these three clades.  相似文献   

12.
Stockpiling of cover soil can influence vegetation development following reclamation. Cover soil, comprising the upper 15–30 cm of the surface material on sites scheduled for mining, is commonly salvaged prior to mining and used directly or stockpiled for various lengths of time until it is needed. Salvaging and stockpiling causes physical, chemical, and biological changes in cover soils. In particular, stockpiling reduces the availability and vigor of vegetative propagules and seed, and can lead to increases in the abundance of some weedy species. This study uses data from monitoring plots to assess how stockpiling of cover soil impacts plant community development on reclaimed oil sands mine sites in northern Alberta. Development of plant communities differed distinctly between directly placed and stockpiled cover soil treatments even 18 years after reclamation. Direct placement of cover soil resulted in higher percent cover, species richness, and diversity. Nonmetric multidimensional scaling and multiresponse permutation procedure revealed compositional differentiation between the treatments. Indicator species analysis showed that direct placement treatment was dominated by perennial species while grasses and annual forb species dominated sites where stockpiled soil was used. Results indicate that stockpiling leads to slower vegetation recovery while direct placement of cover soil supports more rapid succession (from ruderal and annual communities to perennial communities). In addition, direct placement may be less costly than stockpiling. However, scheduling of salvage and placement remains a challenge.  相似文献   

13.
Abstract. This is the first quantitative study of seed bank characteristics in North American alvar habitats. We assessed seed bank density, species richness, and species composition in 75 plots distributed among five alvar sites in Bruce Peninsula National Park, Ontario, Canada, each of which displayed areas of high and low vegetation cover within the alvar and a fully forested perimeter area. Forested habitats immediately adjacent to alvar patches contained minimal seed banks for species restricted to the alvar patches. Open alvars contained less than 1% seeds from woody forest species. This suggests that forest is not invading adjacent alvar habitat via seeds and that adjacent forest does not contain a reservoir of alvar seeds. When compared to areas on the alvar with high vascular plant cover, areas with low cover contained a slightly smaller viable seed bank, but seed banks from high and low vegetation cover plots had similar species composition and species richness. High vegetation cover plots had slightly higher mean and maximum soil depths compared with low cover plots, but no differences in other physical and chemical parameters. Thus, spatial heterogeneity in plant cover is associated only weakly with heterogeneity in below‐ground factors. Despite the availability of seed and soil resources, vegetation dynamics are constrained in areas with low plant cover, and thus alvar community development seems to respond non‐linearly to resource availability.  相似文献   

14.
Traits are important for understanding how plant communities assemble and function, providing a common currency for studying ecological processes across species, locations, and habitat types. However, the majority of studies relating species traits to community assembly rely upon vegetative traits of mature plants. Seed traits, which are understudied relative to whole‐plant traits, are key to understanding assembly of plant communities. This is particularly true for restored communities, which are typically started de novo from seed, making seed germination a critical first step in community assembly and an early filter for plant establishment. We experimentally tested the effects of seed traits (mass, shape, and embryo to seed size ratio) and phylogeny on germination response in 32 species commonly used in prairie grassland restoration in the Midwestern USA, analyzing data using time‐to‐event (survival) analysis. As germination is also influenced by seed dormancy, and dormancy break treatments are commonly employed in restoration, we also tested the effects of two pretreatments (cold stratification and gibberellic acid application) on time to germination. Seed traits, phylogeny, and seed pretreatments all affected time to germination. Of all traits tested, variables related to seed shape (height and shape variance) best predicted germination response, with high‐variance (i.e., pointier and narrower) seeds germinating faster. Phylogenetic position (the location of species on the phylogenetic tree relative to other tested species) was also an important predictor of germination response, that is, closely related species showed similar patterns in time to germination. This was true despite the fact that all measured seed traits showed phylogenetic signal, therefore phylogeny provided residual information that was not already captured by measured seed traits. Seed traits, phylogenetic position, and germination pretreatments were important predictors of germination response for a suite of species commonly used in grassland restoration. Shape traits were especially important, while mass, often the only seed trait used in studies of community assembly, was not a strong predictor of germination timing. These findings illustrate the ecological importance of seed traits that are rarely incorporated into functional studies of plant communities. This information can also be used to advance restoration practice by guiding restoration planning and seed mix design.  相似文献   

15.
Question: How do temporal changes in plant communities occur after volcanic eruptions? What characteristics determine successional divergence or convergence? Location: The summit area of Mount Usu, northern Japan, completely destroyed by 1‐3 m of thick ash and pumice during the 1977‐1978 eruptions. Habitats were classified into three types: gullies where the pre‐eruption topsoil was exposed due to the erosion of tephra (EG), gullies covered with tephra (CG), and outside of gullies covered with thick tephra (OG). Methods: Plant community structure was monitored for 15 years from 1983 to 1997 in 14 2 m × 5 m permanent plots. The data were summarized by species diversity, life form, and the detrended correspondence analysis. Results: The common species were perennial herbaceous plants, but habitat preferences differed between species. Seed bank species, including a nitrogen fixer Trifolium repens, were dominant in EG, and excluded the establishment of the later colonists. Pioneer trees slowly increased in cover. The detrended correspondence analysis indicated that species composition in the earlier stages did not differ greatly between plots. Thereafter, three patterns of temporal community changes were observed: seed bank species persisted in EG, and in OG and CG forest development proceeded or community structure did not change greatly. Conclusion: Pre‐eruption topsoil contributed to revegetation by the supply of seed bank and nutrients in the earliest stages, but resulted in the delay of forest development due to the persistence of seed bank species. Plant community divergence was driven by the persistence of earlier colonists.  相似文献   

16.
Little is known about the soil seed bank and the influence of plant communities on the interaction between the seed bank and aboveground vegetation in the Hyrcanian temperate deciduous forest. We surveyed species composition and diversity of the persistent soil seed bank and the aboveground vegetation in six community types in old-growth Hyrcanian Box tree (Buxus hyrcana) stands in northern Iran. Fifty-two species with an average of 3,808 seeds/spores m−2 germinated; forbs accounted for 64% of the seed bank flora. Thirty-four species in the aboveground vegetation were not presented in the seed bank, 32 species in the seed bank were not found in the vegetation, and 20 species were in both. The dominant tree species were Diospyros lotus and Alnus subcordata with an average of 17 and 4.6 seeds m−2, respectively. Our results suggest that (1) vernal geophytes and shade-tolerant perennials are not incorporated in the seed bank, (2) early successional species are well represented in the seed bank, (3) plant community type has significant impacts on seed bank densities, and seed bank richness and diversity were significantly related to presence/absence of Box tree in the aboveground vegetation. The persistent seed bank contained species that potentially have a negative impact on the regeneration of forests, thus forest managers should retain old-growth Hyrcanian Box tree stands to conserve disturbance-sensitive indicator forest species.  相似文献   

17.
Termites play fundamental roles in tropical ecosystems, and mound-building species in particular are crucial in enhancing species diversity, from plants to mammals. However, it is still unclear which factors govern the occurrence and assembly of termite communities. A phylogenetic community approach and null models of species assembly were used to examine structuring processes associated with termite community assembly in a pristine savannah. Overall, we did not find evidence for a strong influence of interspecific competition or environmental filtering in structuring these communities. However, the presence of a single species, the mound-building termite Macrotermes bellicosus, left a strong signal on structuring and led to clustered communities of more closely related species. Hence, this species changes the assembly rules for a whole community. Our results show the fundamental importance of a single insect species for community processes, suggesting that more attention to insect species is warranted when developing conservation strategies.  相似文献   

18.
Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for reclamation of open‐pit oil sands mining disturbed land in northern Alberta, Canada; coarse woody debris (CWD) is another source of organic matter for land reclamation. We investigated net nitrogen (N) transformation rates in FMM and PMM cover soils near and away from CWD 4–6 years after oil sands reclamation. Monthly net nitrification and N mineralization rates varied over time; however, mean rates across the incubation periods and microbial biomass were greater (p < 0.05) in FMM than in PMM. Net N mineralization rates were positively related to soil temperature (p < 0.001) and microbial biomass carbon (p = 0.045). Net N transformation rates and inorganic N concentrations were not affected by CWD; however, the greater 15N isotope ratio of ammonium near CWD than away from CWD indicates that CWD application increased both gross N mineralization/nitrification (causing N isotope fractionation) and gross N immobilization (no isotopic fractionation). Microbial biomass was greater near CWD than away from CWD, indicating the greater potential for N immobilization near CWD. We conclude that (1) CWD application affected soil microbial properties and would create spatial variability and diverse microsites and (2) cover soil type and CWD application had differential effects on net N transformation rates. Applying FMM with CWD for oil sands reclamation is recommended to increase N availability and microsites.  相似文献   

19.
Bird Perches Increase Forest Seeds on Puerto Rican Landslides   总被引:10,自引:0,他引:10  
Abstract Landslides result in the loss of vertical vegetative structure, soil nutrients, and the soil seed bank. These losses impede timely recovery of tropical forest communities. In this study we added bird perches to six Puerto Rican landslides with three types of surfaces (bare, climbing fern, grass) in an effort to facilitate inputs of forest seeds through bird dispersal and to accelerate plant succession. Numbers of bird‐dispersed forest seeds were significantly higher in plots beneath introduced perches than in control plots. Perches did not increase forest seedling densities compared with control plots. Seven different species of birds were observed on introduced perches. Because 99% of the seed inputs to controls and perch plots in the six landslides were wind‐dispersed seeds (mostly graminoids), perches can improve landslide restoration if woody plants establish and shade out the dominant graminoid and climbing fern ground cover. Although increasing seed inputs from forest species is a critical step in accelerating revegetation of landslides, we suggest that supplemental restoration techniques be applied in addition to bird perches to promote forest recovery.  相似文献   

20.
土壤种子库作为地上植被遗传信息库,对植被自然演替更新以及生态修复建设具有重要作用。为探明桂北喀斯特石漠化地区植被自然恢复潜力和恢复策略,该文选取恭城瑶族自治县喀斯特石漠化地区3种典型植物群落为研究对象,分析不同群落的土壤种子库结构、多样性及其对土壤养分特征的响应,以期为该地区石漠化治理和植被恢复提供理论依据。结果表明:(1)共计监测到幼苗3 648株,隶属于33科51属55种,其中1年生和2年生草本幼苗共20种,多年生草本幼苗21种,藤本幼苗5种、灌木幼苗3种、乔木幼苗6种;不同植物群落土壤种子库平均密度为三华李经济林(22 493 grain·m-2)>青冈次生林(1 033 grain·m-2)>金竹灌丛(793 grain·m-2)。(2)土壤种子库植物生活型方面,三华李经济林主要分布1年生恶性杂草,青冈次生林和金竹灌丛则以多年生草本为主,木本植物占比较少;不同植被类型中土壤种子库物种多样性和相似性总体较低,同时与地上群落物种组成的相似性也较低。(3)研究区域的土壤元素存在高氮低磷的现象,其中磷元素为金...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号