共查询到20条相似文献,搜索用时 0 毫秒
1.
D A Wharton 《Experimental parasitology》1979,48(3):398-406
The ability of embryonating eggs of Ascaris lumbricoides to avoid desiccation by reducing the loss of water through the egg shell was investigated. When exposed to desiccation the eggs lost water at a rate dependent upon the relative humidity and ambient temperature, eventually resulting in the collapse of the eggs and the death of the enclosed embryo. The eggs are small with a large surface to volume ratio. A low permeability to gaseous exchange thus restricts water loss while still ensuring an adequate supply of oxygen for embryonic development. Relative humidity did not appear to affect the rate of development. In eggs exposed to desiccation at various constant temperatures, the rate of water loss increased as an exponential function of increasing temperature. When eggs were exposed to various temperatures before exposure to desiccation at 22 C, the rate of water loss increased as a function of increasing pretreatment temperature. After exposure to 63–65 C, the ability of the egg shell to slow down the loss of water was destroyed. These phenomena suggest that there is not a simple “critical” or “transition” temperature, but a gradual melting of the complex mixture of components forming the lipid layer. 相似文献
2.
3.
Michael S Davis Evangelia Daviskas Sandra D Anderson 《Journal of applied physiology》2003,94(6):2545-6; author reply 2546-7
4.
5.
Peter Tikuisis 《Journal of applied physiology》2003,95(1):89-96
Certain previous studies suggest, as hypothesized herein, that heat balance (i.e., when heat loss is matched by heat production) is attained before stabilization of body temperatures during cold exposure. This phenomenon is explained through a theoretical analysis of heat distribution in the body applied to an experiment involving cold water immersion. Six healthy and fit men (mean +/- SD of age = 37.5 +/- 6.5 yr, height = 1.79 +/- 0.07 m, mass = 81.8 +/- 9.5 kg, body fat = 17.3 +/- 4.2%, maximal O2 uptake = 46.9 +/- 5.5 l/min) were immersed in water ranging from 16.4 to 24.1 degrees C for up to 10 h. Core temperature (Tco) underwent an insignificant transient rise during the first hour of immersion, then declined steadily for several hours, although no subject's Tco reached 35 degrees C. Despite the continued decrease in Tco, shivering had reached a steady state of approximately 2 x resting metabolism. Heat debt peaked at 932 +/- 334 kJ after 2 h of immersion, indicating the attainment of heat balance, but unexpectedly proceeded to decline at approximately 48 kJ/h, indicating a recovery of mean body temperature. These observations were rationalized by introducing a third compartment of the body, comprising fat, connective tissue, muscle, and bone, between the core (viscera and vessels) and skin. Temperature change in this "mid region" can account for the incongruity between the body's heat debt and the changes in only the core and skin temperatures. The mid region temperature decreased by 3.7 +/- 1.1 degrees C at maximal heat debt and increased slowly thereafter. The reversal in heat debt might help explain why shivering drive failed to respond to a continued decrease in Tco, as shivering drive might be modulated by changes in body heat content. 相似文献
6.
7.
A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. 相似文献
8.
L P Novak 《Human biology; an international record of research》1989,61(3):407-414
Total body water was determined on 59 boys and 59 girls and on 40 boys and 45 girls attending junior and senior high schools, respectively. The volunteers were studied for three years. They were given D2O (99.8%) orally, and urine samples were used for determination of the ratio of heavy hydrogen to normal hydrogen by mass spectrometry. Total body water was calculated. The height of boys aged 12 to 13 years increased from 159.1 cm to 177.7 cm at age 17 to 18 years. The girls' height changed from 158.5 cm to 165.7 cm for the same time period. Similarly, the weight of boys increased concomitantly from 49.44 kg to 66.1 kg, whereas the girls' weight increased from 49.0 kg to 58.3 kg. Total body water of boys aged 12 to 13 years and expressed in absolute values increased from 31.9 L to 43.3 L at age 17 to 18. Similar changes of smaller magnitude occurred in girls, where total body water increased from 29.0 L to 31.9 L for the same period of time. In relative terms, total body water of boys increased from 62.1% to 65.9%, reached at the age of 15 to 16 years, and then a slight decrease to 64.2% was found in boys 17 to 18 years old. The girls showed continuous decrease in relative values from 60.3% to 53.6% during the same period of time.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (p<0.05). Oxygen consumption, metabolic heat production and heat loss from the skin were less with the thermal swimsuit than with a normal swimsuit in both water temperatures (p<0.05). Total insulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (p<0.05). Tissue insulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (p<0.05), perhaps due to of the attenuation of shivering during immersion with a thermal swimsuit. A thermal swimsuit can increase total insulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis. 相似文献
10.
Finkler MS 《Physiological and biochemical zoology : PBZ》1999,72(6):714-722
The effects of water availability during incubation on the water contents of neonatal snapping turtles at hatching were examined, along with the influence of hatchling water content on desiccation tolerance and terrestrial locomotor performance. The water contents of hatchlings from eggs incubated on wet substrates were both absolutely and proportionally greater than were those of hatchlings from eggs incubated on dry substrates. Hatchlings with greater water contents at hatching were able to survive longer and to lose more water before physiological performance was adversely affected by desiccation. Increased water contents in hatchlings with greater water availability during incubation may enhance survival by increasing the amount of water the animal can afford to lose before dehydration begins to adversely affect whole animal performance. 相似文献
11.
This study was undertaken to determine how photosynthesis tolerates desiccation in an intertidal alga Fucus vesiculosus L. and a terrestrial sunflower Helianthus annuus L. Photosynthetic O2 evolution generally was inhibited at low water potentials (psiw) but more in sunflower leaves than in Fucus fronds at the same psiw. As psiw decreased, less carbon accumulated in an organic carbon store in Fucus. The inhibition of photosynthesis appeared to be mostly biochemical because it could not be prevented by supplying additional CO2 or by supplying CO2 from the internal organic carbon store. The inhibition of photosynthesis and carbon storage occurred after turgor disappeared and thus when solute concentrations were increasing in the cells. Solute concentrations were much higher in Fucus than in sunflower. After desiccation to the air-dry state (psiw below - 10 MPa), photosynthesis could not recover in sunflower but it recovered rapidly when Fucus was exposed to seawater. The lack of recovery in sunflower was associated with inability to recover turgor probably because of breaks in cell membranes. The ability to recover in Fucus was gradually lost during 1.5 d of desiccation at 45% relative humidity. At lower humidities, recovery was lost sooner as small amounts of water were removed. We conclude that photosynthesis tolerated desiccation more in Fucus than in sunflower because of differences in the molecular environment around the photosynthetic enzymes. Important aspects of this environment were features that prevented membrane breakage but promoted the retention of small amounts of water that were critical for viability. 相似文献
12.
Total body water (TBW) was measured early and late in a menstrual cycle in 56 women, 39 of whom had breast pain. The remainder were asymphtomatic controls. Most women did not conform to the traditional view that there is a premenstrual increase in TBW. In some TBW decreased, while in others there was no change from the early cycle measurement. No TBW pattern correlated with any syndromes of breast pain or with any psychoneurotic profile. 相似文献
13.
Eucalypt plantations have been trialled in recent years as a control measure for shallow groundwater associated with secondary salinity. Uncertainty still remains as to the potential growth and water use of these plantations; these relate mainly to the problems associated with drought stress and accumulated solutes in the root zone resulting from saline groundwater uptake. This study investigates the water balance and identifies water sources of a 21 year old unirrigated Eucalyptus grandis W. Hill ex Maiden (flooded or rose gum) and E. camaldulensis Dehnh. (river red gum) plantation over shallow saline groundwater in the Shepparton Irrigation Region of northern Victoria, Australia. Water sources used by the plantation were identified using a monthly water balance approach, together with investigations of stable isotopes of water (deuterium and oxygen-18), soil water and chloride. We found these trees to be heavily reliant on rainwater, and derive approximately 15% of their transpiration requirements from saline (10,000 mg l?1) groundwater at the capillary fringe. Rainfall at the site is relatively low (465 mm year?1 on average) and groundwater uptake provides a stable water source that leads to a slight extension of the growing period of these trees. There is little potential for recharge, with subsurface water moving into the groundwater depression created by tree water uptake. 相似文献
14.
15.
Structural alterations of the photobiont and mycobiont cells of lichens have been related to CO2-gas exchange during experiments involving water vapour uptake and desiccation of liquid-water-saturated thalli. Increasing water vapour uptake of air dry lichens led to a gradual unfolding of the photobiont cells in Lobaria pulmonaria, Pseudevernia furfuracea, Ramalina maciformis and Teloschistes lacunosus as studied by low-temperature scanning electron microscopy. The data indicated that globular, probably turgid, cells and also slightly infolded or even heavily collapsed cells contributed to positive net photosynthesis, which was reached after water vapour uptake by the four species studied. During desiccation of fully water-saturated thalli of L. pulmonaria, extrathalline water films gradually evaporated before maximum values of CO2-gas exchange were measured and before photobiont cells started to shrivel. In contrast, in P. furfuracea the CO2-gas exchange maximum was reached when a considerable percentage of photobiont cells had already collapsed and while other parts of the thalli were still covered with liquid water. Further desiccation led to cavitation of the cortical cells in both species, this occurring at water contents at which net photosynthesis was still positive.Abbreviations EF
exoplasmic fracture face
- LTSEM
low-temperature scanning electron microscopy
- NP
net photosynthesis
- PAR
photosynthetic active radiation (400–700 nm)
- PF
plasmic fracture face
We thank D. Pichier, P. Hatvani, H. Müller, Birmensdorf, and J.B. Winkler, Kiel, for technical assistance, and J. Innes, Birmensdorf, for correcting the English text. Stimulating discussion with R. Honegger (Institut für Pflanzenbiologie, Universität Zürich, Switzerland), L. Kappen (Botanisches Institut, Universität Kiel, Germany), T.G.A. Green (Department of Biological Sciences, Hamilton, New Zealand), and O.L. Lange (Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, Germany) are gratefully acknowledged. 相似文献
16.
The general size and composition of the extant yeast populations in 13 polluted freshwater habitats were surveyed. Subsequently the yeast populations in three of the 13 locations were quantitatively determined and compared. The three locations had (A) low pollution levels, (B) heavy industrial waste pollution, and (C) heavy domestic waste pollution.The yeast population at location A was dominated byRhodotorula andCryptococcus isolates. At station BRhodotorula andCandida were predominant.Candida isolates were in the majority at location C andRhodotorula strains were second in frequency, but were much lower in proportion of the population than at the other two habitats.These polluted waters in general had large yeast populations, ranging as high as 27,000 yeasts per 100 ml, and averaging approximately 3000 yeasts per 100 ml.The presence of human wastes was especially associated with large increases in the proportion ofCandida yeasts in the environment. The genusRhodotorula was consistently present at all locations, but the genusCryptococcus was a major component of the yeast population only in non-polluted or lightly polluted fresh water.We appreciate the assistance of the Calumet Area Surveillance Program, Federal Water Pollution Control Administration, Chicago, in the collection of water samples. This investigation was supported by U.S. Public Health Service Research Grant No. AI 04642 from the National Institute of Allergy and Infectious Diseases. 相似文献
17.
DENISE DE C. BICUDO BÁRBARA M. FONSECA LUIS M. BINI LUCIANE O. CROSSETTI CARLOS E. DE M. BICUDO TATIANE ARAÚJO-JESUS 《Freshwater Biology》2007,52(6):1120-1133
1. Based on a comprehensive data set collected monthly during 8 years (1997–2004), we evaluated the effects of mechanical removal of Eichhornia crassipes on the limnological characteristics and algal biomass of a polymictic shallow tropical reservoir. 2. Interrupted time series analyses indicated that the limnological responses to macrophyte removal can be classified as an ‘abrupt permanent impact’ implying that the overall mean of the time‐series shifted promptly after intervention. These analyses indicated a significant increase for pH, total phosphorus, total phytoplankton and cyanobacterial biomass, and a decrease in water transparency and CO2 concentrations in the surface water; also, the increase in water stability, increase of bottom soluble reactive phosphorus (SRP) and decrease in bottom oxygen levels. 3. Cyclic anoxic periods previously observed during springs and summers were replaced by a persistent period of anoxic conditions in the sediment overlying water. Anoxic conditions were suitable for SRP release from sediments. Heavy cyanobacterial blooms became more persistent, maximum biomass (4229 mm3 L−1) was 30 times larger, the blooms frequently reached 2 m and sometimes the bottom of the reservoir, contrasting to the preremoval period in which it reached at most 1 m deep. 4. The long‐term P dynamics in the system, initially driven by allochthonous nutrient loadings were replaced by internal ecological processes. Water hyacinth removal markedly accelerated the process of eutrophication due to internal feedback mechanisms, leading to a switch to a more turbid state. Biological feedback mechanisms were driven by cyanobacterial blooms by enhancing water stability, oxygen anoxia at the bottom and by increasing suitable conditions for P internal loading. These data support the hypothesis of the role of cyanobacterial blooms as an important factor impairing water quality and driving the ecosystem towards a stable degraded state. 5. These findings have important implications for the restoration of shallow stratifying eutrophic lakes, as the alternative degraded state is most likely to occur when compared with their non‐stratifying counterparts. Moreover, feedback mechanisms in tropical and subtropical shallow lakes seem to be stronger than in temperate ones, as stratification events are more likely to occur over the year, intensifying system resilience to restorative strategies. 相似文献
18.
This study investigated thermal swimsuits (TSS) effects on body temperature and thermal insulation of prepubescent children during moderate-intensity water exercise. Nine prepubescent children (11.0+/-0.7 yrs) were immersed in water (23 degrees C) and pedalled on an underwater cycle-ergometer for 30 min with TSS or normal swimsuits (NSS). The rectal temperature (Tre) was maintained slightly higher with TSS than with NSS. The total insulation (Itotal) was significantly higher with TSS. The DeltaTre, Deltamean body temperature (Tb), and tissue insulation (Itissue) in the NSS condition were correlated with % body fat, which indicated that the insulation layer of subjects with low body fat was thinner than that of obese subjects, and tended to decrease body temperature. Wearing TSS increased Itotal, thereby reducing heat loss from subjects' skin to the water. Consequently, subjects with TSS were able to maintain higher body temperatures. In addition, TSS is especially advantageous for subjects with low body fat to compensate for the smaller Itissue. 相似文献
19.
20.
Protoplasts were isolated from pea (Pisum sativum L. cv. Alaska) embryonic axes during and after germination to determine whether the loss of desiccation tolerance in the embryos also occurs in the protoplasts. At all times studied, protoplast survival decreased as water content decreased; however, the sensitivity to dehydration was less when the protoplasts were isolated from embryos that were still desiccation-tolerant (12 h and 18 h of imbibition) than when protoplasts were derived from axes that were sensitive (24 h and 36 h of imbibition). The water content at which 50% of the population was killed (WC50) increased throughout germination and early seedling growth for both the intact tissue and the protoplasts derived from them. Prior to radicle emergence, protoplasts were less desiccation-tolerant than the intact axes; however, protoplasts isolated from radicles shortly after emergence had lower WC50s than the intact radicles. A comparison of protoplast survival after isolation and dehydration in either 500 mM sucrose/raffinose or 700 mM sucrose revealed no difference in tolerance except at 24 h of imbibition, when protoplasts treated in the more concentrated solution had improved tolerance of dehydration. Although intact epicotyls are generally more desiccation-tolerant than radicles, protoplasts isolated separately from epicotyls and radicles did not differ in tolerance. Collectively, these data suggest that protoplasts gradually lose desiccation tolerance during germination, as do the orthodox embryos from which they were derived. However, even prior to radicle emergence, protoplasts display a sensitivity to progressive dehydration that is similar to that shown by recalcitrant and ageing embryos. 相似文献