首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To biosynthesize the (3R,5S)‐CDHH in an industrial scale, a newly synthesized stereoselective short chain carbonyl reductase (SCR) was successfully cloned and expressed in Escherichia coli. The fermentation of recombinant E. coli harboring SCR was carried out in 500 L and 5000 L fermenters, with biomass and specific activity of 9.7 g DCW/L, 15749.95 U/g DCW, and 10.97 g DCW/L, 19210.12 U/g DCW, respectively. The recombinant SCR was successfully applied for efficient production of (3R,5S)‐CDHH. The scale‐up synthesis of (3R,5S)‐CDHH was performed in 5000 L bioreactor with 400 g/L of (S)‐CHOH at 30°C, resulting in a space‐time yield of 13.7 mM/h/g DCW, which was the highest ever reported. After isolation and purification, the yield and d.e. of (3R,5S)‐CDHH reached 97.5% and 99.5%, respectively. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:612–620, 2017  相似文献   

3.
High energy density and power density within a limited volume of flexible solid‐state supercapacitors are highly desirable for practical applications. Here, free‐standing high‐quality 3D nanoporous duct‐like graphene (3D‐DG) films are fabricated with high flexibility and robustness as the backbones to deposit flower‐like MnO2 nanosheets (3D‐DG@MnO2). The 3D‐DG is the ideal support for the deposition of large amount of active materials because of its large surface area, appropriate pore structure, and negligible volume compared with other kinds of carbon backbones. Moreover, the 3D‐DG preserve the distinctive 2D coherent electronic properties of graphene, in which charge carriers move rapidly with a small resistance through the high‐quality and continuous chemical vapor deposition‐grown graphene building blocks, which results in a high rate performance. Marvelously, ultrathin (≈50 μm) flexible solid‐state asymmetric supercapacitors (ASCs) using 3D‐DG@MnO2 as the positive electrode and 3D hierarchical nanoporous graphene films as the negative electrode display ultrahigh volumetric energy density (28.2 mW h cm?3) and power density (55.7 W cm?3) at 2.0 V. Furthermore, as‐prepared ASCs show high cycle stability clearly demonstrating their broad applications as power supplies in wearable electronic devices.  相似文献   

4.
Phototropism is the process by which plants grow towards light in order to maximize the capture of light for photosynthesis, which is particularly important for germinating seedlings. In Arabidopsis, hypocotyl phototropism is predominantly triggered by blue light (BL), which has a profound effect on the establishment of asymmetric auxin distribution, essential for hypocotyl phototropism. Two auxin efflux transporters ATP‐binding cassette B19 (ABCB19) and PIN‐formed 3 (PIN3) are known to mediate the effect of BL on auxin distribution in the hypocotyl, but the details for how BL triggers PIN3 lateralization remain poorly understood. Here, we report a critical role for clathrin in BL‐triggered, PIN3‐mediated asymmetric auxin distribution in hypocotyl phototropism. We show that unilateral BL induces relocalization of clathrin in the hypocotyl. Loss of clathrin light chain 2 (CLC2) and CLC3 affects endocytosis and lateral distribution of PIN3 thereby impairing BL‐triggered establishment of asymmetric auxin distribution and consequently, phototropic bending. Conversely, auxin efflux inhibitors N‐1‐naphthylphthalamic acid and 2,3,5‐triiodobenzoic acid affect BL‐induced relocalization of clathrin, endocytosis and lateralization of PIN3 as well as asymmetric distribution of auxin. These results together demonstrate an important interplay between auxin and clathrin function that dynamically regulates BL‐triggered hypocotyl phototropism in Arabidopsis.  相似文献   

5.
Asymmetric cell division is important for regulating cell proliferation and fate determination during stomatal development in plants. Although genes that control asymmetric division and cell differentiation in stomatal development have been reported, regulators controlling the process from asymmetric division to cell differentiation remain poorly understood. Here, we report a weak allele (fk–J3158) of the Arabidopsis sterol C14 reductase gene FACKEL (FK) that shows clusters of small cells and stomata in leaf epidermis, a common phenomenon that is often seen in mutants defective in stomatal asymmetric division. Interestingly, the physical asymmetry of these divisions appeared to be intact in fk mutants, but the cell‐fate asymmetry was greatly disturbed, suggesting that the FK pathway links these two crucial events in the process of asymmetric division. Sterol profile analysis revealed that the fk–J3158 mutation blocked downstream sterol production. Further investigation indicated that cyclopropylsterol isomerase1 (cpi1), sterol 14α–demethylase (cyp51A2) and hydra1 (hyd1) mutants, corresponding to enzymes in the same branch of the sterol biosynthetic pathway, displayed defective stomatal development phenotypes, similar to those observed for fk. Fenpropimorph, an inhibitor of the FK sterol C14 reductase in Arabidopsis, also caused these abnormal small‐cell and stomata phenotypes in wild‐type leaves. Genetic experiments demonstrated that sterol biosynthesis is required for correct stomatal patterning, probably through an additional signaling pathway that has yet to be defined. Detailed analyses of time‐lapse cell division patterns, stomatal precursor cell division markers and DNA ploidy suggest that sterols are required to properly restrict cell proliferation, asymmetric fate specification, cell‐fate commitment and maintenance in the stomatal lineage cells. These events occur after physical asymmetric division of stomatal precursor cells.  相似文献   

6.
The optically active C3 synthetic blocks are remarkably versatile intermediates for the synthesis of numerous pharmaceuticals and agrochemicals. This work provides a simple and efficient enzymatic synthetic route for the environment‐friendly synthesis of C3 chiral building blocks. Chloroperoxidase (CPO)‐catalyzed enantioselective halo‐hydroxylation and epoxidation of chloropropene and allyl alcohol was employed to prepare C3 chiral building blocks in this work, including (R)‐2,3‐dichloro‐1‐propanol (DCP*), (R)‐2,3‐epoxy‐1‐propanol (GLD*), and (R)‐3‐chloro‐1‐2‐propanediol (CPD*). The ee values of the formed C3 chiral building blocks DCP*, CPD*, and glycidol were 98.1, 97.5, and 96.7%, respectively. Moreover, the use of small amount of imidazolium ionic liquid enhanced the yield efficiently due to the increase of solubility of hydrophobic organic substrates in aqueous reaction media, as well as the improvement of affinity and selectivity of CPO to substrate. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:724–729, 2015  相似文献   

7.
羟甲基戊二酰CoA(HMG-CoA)还原酶抑制剂是降血脂药物。综述了近年来国内外酶法制备HMG-CoA还原酶抑制剂手性中间体的研究进展,从不对称合成和外消旋体拆分2个方面介绍了酶法制备HMG-CoA还原酶抑制剂手性中间体的工艺路线和研究水平,对其工业化前景进行了展望。  相似文献   

8.
Cellular induction of reductase enzymes can alter the susceptibility of cells toward drugs and chemicals. In this study, we compared the capacity of a single dose of sodium selenite and 3H‐1,2‐dithiole‐3‐thione (D3T) to influence the drug‐relevant reducing capacity of HT29 cells over time, and defined the protein‐specific contribution to this activity on the basis of selected reaction monitoring mass spectrometry. Thioredoxin reductase 1 (TrxR1) protein levels and activity were inducible up to 2.2‐fold by selenium. In contrast, selenium had only a minor influence on prostaglandin reductase 1 (PTGR1) and NAD(P)H:quinone oxidoreductase 1 (NQO1) activity and protein levels. D3T, a strong Nrf2 inducer, induced all the reductases and additionally increased the cytotoxicity of hydroxymethylacylfulvene, a bioreductive DNA‐alkylating drug. The data and experimental approaches allow one to define induction potency for reductase enzymes PTGR1, TrxR1, and NQO1 in HT29 cells and link these to changes in drug cytotoxicity.  相似文献   

9.
The π‐helix located at the tetramer interface of two‐component FMN‐dependent reductases contributes to the structural divergence from canonical FMN‐bound reductases within the NADPH:FMN reductase family. The π‐helix in the SsuE FMN‐dependent reductase of the alkanesulfonate monooxygenase system has been proposed to be generated by the insertion of a Tyr residue in the conserved α4‐helix. Variants of Tyr118 were generated, and their X‐ray crystal structures determined, to evaluate how these alterations affect the structural integrity of the π‐helix. The structure of the Y118A SsuE π‐helix was converted to an α‐helix, similar to the FMN‐bound members of the NADPH:FMN reductase family. Although the π‐helix was altered, the FMN binding region remained unchanged. Conversely, deletion of Tyr118 disrupted the secondary structural properties of the π‐helix, generating a random coil region in the middle of helix 4. Both the Y118A and Δ118 SsuE SsuE variants crystallize as a dimer. The MsuE FMN reductase involved in the desulfonation of methanesulfonates is structurally similar to SsuE, but the π‐helix contains a His insertional residue. Exchanging the π‐helix insertional residue of each enzyme did not result in equivalent kinetic properties. Structure‐based sequence analysis further demonstrated the presence of a similar Tyr residue in an FMN‐bound reductase in the NADPH:FMN reductase family that is not sufficient to generate a π‐helix. Results from the structural and functional studies of the FMN‐dependent reductases suggest that the insertional residue alone is not solely responsible for generating the π‐helix, and additional structural adaptions occur to provide the altered gain of function.  相似文献   

10.
Environmental factors, such as ultraviolet‐B (UV‐B) irradiation, have the ability to affect pathways such as nitrogen metabolism. As fixed nitrogen is the keystone mineral nutrient that controls grain crop yield, any alteration in this cycle can be detrimental to plant productivity. Nitrate reductase enzyme activity is responsible for the reduction of nitrate to nitrite, and nitrate is the major form of nitrogen assimilated in plants. In maize (Zea mays L.) production, nitrate assimilation kinetics are important for both high‐ and low‐input agricultural systems. Nitrate reductase protein activity is controlled by phosphatases and kinases. Nitrate reductase activity is responsive to environmental signals such as light–dark cycles and UV‐B radiation, although the regulatory controls are not yet fully understood. We have determined the location of maize genetic factors that control nitrate reductase activity and the extent of contribution of each of these factors, both locally in the leaf tissue and via long‐distance signaling loci that affect root nitrate reductase activity upon leaf UV irradiation. In the IBM94 recombinant inbred mapping population, the loci controlling regulation of nitrate reductase activity under UV‐B map to different positions than the loci controlling nitrate reductase activity in unexposed plants.  相似文献   

11.
12.
13.
Electrophilic compounds such as glyoxals, which are toxic due to their reactive carbonyl group, are generated in vivo through various pathways. In this study, we obtained evidence indicating that the nemRA operon, previously reported to encode a repressor and the N‐ethylmaleimide reductase, respectively, is co‐transcribed with the 3′‐proximal gloA gene encoding glyoxalase I. The operon is not only involved in cytosolic detoxification but is also regulated by electrophiles such as quinones and glyoxals. A gel mobility shift assay revealed that purified NemR repressor bound to DNA was dissociated upon interaction with quinones and glyoxals, while their reduced forms were ineffective. The cysteines of NemR at 21 and 116 were essential in sensing electrophiles in vivo and in vitro. Reversible intermolecular disulphide bonds were observed with a reducing agent as well as with electrophiles. DNA binding affinity reduced by glyoxal was also increased with a reducing agent. The NemA reductase, an FMN‐containing enzyme, exhibited catalytic activity toward various electrophiles including quinones, while GloA played a major role in glyoxal detoxification. Therefore, we propose that cells have a cytosolic system consisting of the nemRAgloA operon for the reduction of electrophiles, especially quinones and glyoxals, to maintain an appropriate intracellular redox balance.  相似文献   

14.
t‐Butyl 6‐cyano‐(3R,5R)‐dihydroxyhexanoate ((3R,5R)‐ 2 ) is a key chiral diol precursor of atorvastatin calcium (Lipitor®). We have constructed a Kluyveromyces lactis aldo‐keto reductase mutant KlAKR‐Y295W/W296L (KlAKRm) by rational design in previous research, which displayed high activity and excellent diastereoselectivity (dep > 99.5%) toward t‐butyl 6‐cyano‐(5R)‐hydroxy‐3‐oxohexanoate ((5R)‐ 1 ). To realize in situ cofactor regeneration, a robust KlAKRm and Exiguobacterium sibiricum glucose dehydrogenase (EsGDH) co‐producer E. coli BL 21(DE3) pETDuet‐esgdh (MCS1)/pET‐28b (+)‐klakrm was constructed in this work. Under the optimized conditions, AKR and GDH activities of E. coli BL 21(DE3) pETDuet‐esgdh (MCS1)/pET‐28b (+)‐klakrm peaked at 249.9 U/g DCW (dry cellular weight) and 29100 U/g DCW, respectively. It completely converted (5R)‐ 1 at substrate loading size of up to 60.0 g/L (5R)‐ 1 in the absence of exogenous NADH, which was one‐fifth higher than that of the separately prepared KlAKRm and EsGDH under the same conditions. In this manner, a biocatalytic process for (3R,5R)‐ 2 with productivity of 243.2 kg/m3 d was developed. Compared with the combination of separate expressed KlAKRm with EsGDH, co‐expression of KlAKRm and EsGDH has the advantages of alleviating cell cultivation burden and elevating substrate load. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1235–1242, 2017  相似文献   

15.

Aim

To identify human subjects harbouring intestinal bacteria that bioactivate daidzein to equol using a targeted PCR‐based approach.

Methods and Results

In a pilot study including 17 human subjects, equol formation was determined in faecal slurries. In parallel, faecal DNA was amplified by PCR using degenerate primers that target highly conserved regions of dihydrodaidzein reductase and tetrahydrodaidzein reductase genes. PCR products of the expected size were observed for six of the eight subjects identified as equol producers. Analysis of clone libraries revealed the amplification of sequences exclusively related to Adlercreutzia equolifaciens in four of the subjects tested positive for equol formation, whereas in three of the equol producers, only sequences related to Slackia isoflavoniconvertens were observed. No amplicons were obtained for one equol‐forming subject, thus suggesting the presence of nontargeted alternative genes. Amplicons were only sporadically observed in the nonequol producers.

Conclusion

The majority of human subjects who produced equol were also detected with the developed PCR‐based approach.

Significance and Impact of the Study

The obtained results shed light on the distribution and the diversity of known equol‐forming bacterial species in the study group and indicate the presence of as yet unknown equol‐forming bacteria.  相似文献   

16.
CYP2J2 epoxygenase is a membrane bound cytochrome P450 that converts omega‐3 and omega‐6 fatty acids into physiologically active epoxides. In this work, we present a comprehensive comparison of the effects of N‐terminal modifications on the properties of CYP2J2 with respect to the activity of the protein in model lipid bilayers using Nanodiscs. We demonstrate that the complete truncation of the N‐terminus changes the association of this protein with the E.coli membrane but does not disrupt incorporation in the lipid bilayers of Nanodiscs. Notably, the introduction of silent mutations at the N‐terminus was used to express full length CYP2J2 in E. coli while maintaining wild‐type functionality. We further show that lipid bilayers are essential for the productive use of NADPH for ebastine hydroxylation by CYP2J2. Taken together, it was determined that the presence of the N‐terminus is not as critical as the presence of a membrane environment for efficient electron transfer from cytochrome P450 reductase to CYP2J2 for ebastine hydroxylation in Nanodiscs. This suggests that adopting the native‐like conformation of CYP2J2 and cytochrome P450 reductase in lipid bilayers is essential for effective use of reducing equivalents from NADPH for ebastine hydroxylation.  相似文献   

17.
There is an escalating interest of using double stranded DNA molecules as a chiral scaffold to construct metal‐biomacromolecule hybrid catalysts for asymmetric synthesis. Several recent studies also evaluated the use of G‐quadruplex DNA‐based catalysts for asymmetric Diels‐Alder and Friedel‐Crafts reactions. However, there is still a lack of understanding of how different oligonucleotides, salts (such as NaCl and KCl), metal ligands and co‐solvents affect the catalytic performance of quadruplex DNA‐based hybrid catalysts. In this study, we aim to systematically evaluate these key factors in asymmetric Michael addition reactions, and to examine the conformational and molecular changes of DNA by circular dichroism (CD) spectroscopy and gel electrophoresis. We achieved up to 95% yield and 50% enantiomeric excess (ee) when the reaction of 2‐acylimidazole 1a and dimethylmalonate was catalyzed by 5′‐G3(TTAG3)3?3′ (G4DNA1) in 20 mM MOPS (pH 6.5) containing 50 mM KCl and 40 µM [Cu(dmbipy)(NO3)2], and G4DNA1 was pre‐sonicated in ice bath for 10 min prior to the reaction. G‐quadruplex‐based hybrid catalysts provide a new tool for asymmetric catalysis, but future mechanistic studies should be sought to further improve the catalytic efficiency. The current work presents a systematic study of asymmetric Michael addition catalyzed by G‐quadruplex catalysts constructed via non‐covalent complexing, and an intriguing finding of the effect of pre‐sonication on catalytic efficiency. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:891–898, 2016  相似文献   

18.
This study evaluates the protective effects of 7‐hydroxycoumarin (7‐HC) on dyslipidemia and cardiac hypertrophy in isoproterenol (ISO) induced myocardial infarction (MI) in rats. Rats were pre‐ and co treated with 7‐HC (16 mg/kg) daily for 8 days. ISO (100 mg/kg) was subcutaneously injected into rats on seventh and eighth days to induce MI. Increased activity/levels of serum creatine kinase‐MB (CK‐MB), troponin‐T, plasma lipid peroxidation products, and altered levels of lipids in the serum and heart and serum lipoproteins were noted in ISO‐induced rats. ISO‐induced myocardial infarcted rats revealed increased hypertrophy (cardiac and left ventricular) and hepatic 3‐hydroxyl 3‐methylglutaryl‐coenzyme‐A reductase (HMG‐CoA reductase) activity. Pre and cotreatment with 7‐HC revealed significant protective effects on all the biochemical parameters evaluated. The in vitro study demonstrated its free radical scavenging property. Thus, 7‐HC protects ISO‐induced MI in rats by its free radical scavenging and antihyperlipidaemic and antihypertrophic properties.  相似文献   

19.
Conducting polymers (CPs) are attractive pseudocapacitive materials which show the highest capacitance under positive potentials in aqueous protic electrolytes. One way to expand their voltage window (thus energy density) in aqueous electrolytes is to manufacture asymmetric supercapacitors using distinctly different anodes. However, CPs lack matching pseudocapacitive anode materials that can perform well in protic electrolytes (e.g., sulfuric acid). 2D titanium carbide (Ti3C2Tx), MXene, as a universal pseudocapacitive anode material for a range of CPs, such as polyaniline, polypyrrole, and poly(3,4‐ethylenedioxythiophene) deposited on reduced graphene oxide (rGO) sheets, is reported here. All‐pseudocapacitive organic–inorganic asymmetric devices with MXene cathodes and rGO–polymer anodes can operate in voltage windows up to 1.45 V in 3 m H2SO4. Most importantly, these devices show outstanding cycling performance, outperforming many reported asymmetric pseudocapacitors.  相似文献   

20.
Achieving high‐performance Na‐ion capacitors (NICs) has the particular challenge of matching both capacity and kinetics between the anode and cathode. Here a high‐power NIC full device constructed from 2D metal–organic framework (MOFs) array is reported as the reactive template. The MOF array is converted to N‐doped mesoporous carbon nanosheets (mp‐CNSs), which are then uniformly encapsulated with VO2 and Na3V2(PO4)3 (NVP) nanoparticles as the electroactive materials. By this method, the high‐power performance of the battery materials is enabled to be enhanced significantly. It is discovered that such hybrid NVP@mp‐CNSs array can render ultrahigh rate capability (up to 200 C, equivalent to discharge within 18 s) and superior cycle performance, which outperforms all NVP‐based Na‐ion battery cathodes reported so far. A quasi‐solid‐state flexible NIC based on the NVP@mp‐CNSs cathode and the VO2@mp‐CNSs anode is further assembled. This hybrid NIC device delivers both high energy density and power density as well as a good cycle stability (78% retention after 2000 cycles at 1 A g?1). The results demonstrate the powerfulness of MOF arrays as the reactor for fabricating electrode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号