首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
(S)‐(?)‐1‐(1′‐napthyl)‐ethanol (S‐NE) is an important intermediate for the preparation of mevinic acid analogs, which is used for the treatment of hyperlipidemia. The objectives of the study were to isolate a microorganism that could effectively reduce 1‐acetonaphthone (1‐ACN) to S‐NE, to determine the influence that the physicochemical parameters would have on the reduction by the isolated microorganism, and to attempt large‐scale studies with the microorganism. Over the years fungi have been considered a promising biocatalyst and it has been presumed that many fungal species have not been isolated and therefore the current study focused on possible isolation of these microorganisms. A total of 72 fungal isolates were screened for their ability to reduce 1‐ACN to its corresponding alcohol. The isolate, EBK‐62, identified as Alternaria alternata, was found to be the most successful at reducing the ketone to the corresponding alcohol in the submerged culture. The reaction conditions were systematically optimized for the reducing agent A. alternata EBK62, which showed high stereospecificity and good conversion for the reduction. The preparative scale study was carried out in a 2 L bioreactor and a total of 4.9 g of S‐NE in optically pure form (>99% enantiomeric excess) was produced in 48 h. Chirality 28:669–673, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
Engin Şahin 《Chirality》2018,30(2):189-194
Piperonyl ring is found in a number of naturally occurring compounds and possesses enormous biological activities. There are many studies in the literature with compounds containing a piperonyl ring, but there are very few studies on the synthesis of chiral piperonyl carbinol. The objective of this study was to determine the microbial reduction ability of bacterial strains and to reveal the effects of different physicochemical parameters on this reduction ability. A total of 15 bacterial isolates were screened for their ability to reduce 1‐(benzo[d][1,3]dioxol‐5‐yl) ethanone 1 to its corresponding alcohol. Among these isolates Lactobacillus paracasei BD101 was found to be the most successful biocatalyst to reduce the ketone containing piperonyl ring to the corresponding alcohol. The reaction conditions were systematically optimized for the reducing agent L paracasei BD101, which showed high enantioselectivity and conversion for the bioreduction. The preparative scale study was performed, and a total of 3.72 g of (R)‐1‐(1,3‐benzodioxol‐5‐yl) ethanol in high enantiomeric form (>99% enantiomeric excess) was produced in a mild, cheap, and environment‐friendly process. This study demonstrates that L paracasei BD101 can be used as a biocatalyst to obtain chiral carbinol with excellent yield and selectivity.  相似文献   

3.
In this study, a newly isolated strain screened from the indoxacarb‐rich agricultural soils, Bacillus cereus WZZ006, has a high stereoselectivity to racemic substrate 5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester. (S)‐5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester was obtained by bio‐enzymatic resolution. After the 36‐hour hydrolysis in 50‐mM racemic substrate under the optimized reaction conditions, the e.e.s was up to 93.0% and the conversion was nearly 53.0% with the E being 35.0. Therefore, B cereus WZZ006 performed high‐level ability to produce (S)‐5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester. This study demonstrates a new biocatalytic process route for preparing the indoxacarb chiral intermediates and provides a theoretical basis for the application of new insecticides in agricultural production.  相似文献   

4.
In this study, a total of 10 bacterial strains were screened for their ability to reduce cyclohexyl(phenyl)methanone 1 to its corresponding alcohol. Among these strains, Lactobacillus paracasei BD101 was found to be the most successful biocatalyst to reduce the ketones to the corresponding alcohols. The reaction conditions were systematically optimized for the reducing agent L paracasei BD101, which showed high enantioselectivity and conversion for the bioreduction. The preparative scale asymmetric reduction of cyclohexyl(phenyl)methanone ( 1 ) by L paracasei BD101 gave (S)‐cyclohexyl(phenyl)methanol ( 2 ) with 92% yield and >99% enantiomeric excess. The preparative scale study was carried out, and a total of 5.602 g of (S)‐cyclohexyl(phenyl)methanol in high enantiomerically pure form (>99% enantiomeric excess) was produced. L paracasei BD101 has been shown to be an important biocatalyst in asymmetric reduction of bulky substrates. This study demonstrates the first example of the effective synthesis of (S)‐cyclohexyl(phenyl)methanol by the L paracasei BD101 as a biocatalyst in preparative scale.  相似文献   

5.
A novel enantioselective synthesis of (R)‐cinacalcet with 99% enantiomeric excesses (ee) has been achieved. The main strategies of the approach include a gram‐scale cobalt‐catalysed asymmetric cross‐coupling of racemic ester with arylzinc reagent, Hoffman‐type rearrangement of acidamide, the amidation of chiral amine, and improving the ee of chiral amide from 87% to 99% via recrystallization.  相似文献   

6.
The asymmetric synthesis of (R)-2-chloro-1-(m-chlorophenyl)ethanol, a precursor for a key intermediate of an important class of drugs, was achieved by reduction of the corresponding ketone using an acetone powder of Geotrichum candidum with 98% ee and 94% yield based on the starting amount of ketone.  相似文献   

7.
A series of new chiral molecular tweezers, di‐(R,R)‐1‐[10‐(1‐hydroxy‐2,2,2‐trifluoroethyl)‐9‐anthryl]‐2,2,2‐trifluoroethyl phthalate (2), isophthalate (3) and terephthalate (4), were synthesized and their structure studied by NMR and molecular mechanics. Their effectiveness as chiral solvating agents for the determination of the enantiomeric purity of chiral compounds using NMR was demonstrated. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
The application of several immobilized lipases has been explored in the enantioselective esterification of (R,S)‐2‐methylbutyric acid, an insect pheromone precursor. With the use of Candida antarctica B, using hexane as solvent, (R)‐pentyl 2‐methylbutyrate was prepared in 2 h with c 40%, eep 90%, and E = 35, while Thermomyces lanuginosus leads to c 18%, eep 91%, and E = 26. The (S)‐enantiomer was obtained by the use of Candida rugosa or Rhizopus oryzae (2‐h reaction, c 34% and 35%, eep 75 and 49%, and E = 10 and 4, respectively). Under optimal conditions, the effect of the solvent, the molar ratio, and the nucleophile were evaluated.  相似文献   

9.
The β‐adrenergic receptors mediate several physiological processes including heart rate (β1), bronchodilation (β2), and lipolysis (β3). Therefore, selectivity is important for a possible therapeutic agent acting via these receptors. Aryloxypropanolamines are β‐receptor agonists or antagonists, depending on the aryl group and its substituents. We therefore hypothesized that fluorine substitution on the aromatic ring in this class could lead to significant biological effects because of the unique chemical characteristics of fluorine. Because the target compound has a chiral center, we set out to synthesize the two enantiomers so that effects of stereochemistry on biological activity could be evaluated. Syntheses of the enantiomers were performed starting with commercially available fluoronaphthalene and subsequent use of the chiral synthon (2R)‐ or (2S)‐glycidyl 3‐nitrobenzenesulfonate, depending on the desired enantiomer. High‐pressure liquid chromatography (HPLC) methods were used to characterize %ee. Each enantiomer was synthesized. They exhibited nanomolar binding activities on β‐adrenergic receptors. The (S)‐enantiomer was found to be up to 310 times more potent than the (R). It was also found to be about five‐fold more selective for β2‐ than for β1‐receptors. The current report demonstrates the importance of stereochemistry for the fluoroaromatic β‐receptor ligands. Chirality 11:144–148, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
The residual enantiomers of three tris‐(3‐indolyl)‐phosphane oxides bearing different alkyl groups (methyl, ethyl or i‐propyl) in position 2 of the indole rings constituting the blades were separated on the immobilized type Chiralpak IC column in polar organic and reversed‐phase modes. The good enantioselectivity and versatility of the IC CSP allowed easy isolation of the enantiomerically highly enriched samples suitable for configurational stability studies. The enantiomerization barriers of residual phosphane oxides were evaluated both by off‐column techniques (CD signal and enantiomeric purity decay kinetics) and by dynamic enantioselective high‐performance liquid chromatography (HPLC). Chirality 27:888–899, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Chiral functionalization of 2,4,5,6‐tetrachloro‐1,3‐dicyanobenzene (1) by regioselective nucleophilic substitution of one or two chlorine atoms by optically pure (R)‐(+)‐1‐naphthylethylamine (NEA), or by a glycine unit as a spacer to (R)‐NEA, enables the preparation of brush‐type chiral selectors (2, 3, 9, 13). By the introduction of the 3‐aminopropyltriethoxysilyl (APTES) group, reactive intermediates 4a/b, 5, 10a/b, and 14a/b are obtained ( a/b indicate a mixture of regioisomers with APTES in 6‐ and 2‐position). Binding of these to silica gel afforded four novel chiral stationary phases (CSPs) 6, 7, 15, and 16. HPLC columns containing CSPs with (R)‐NEA directly linked to polysubstituted aromatic ring (6, 7) are not very effective in resolution of most of the 23 racemic analytes, whereas the columns with distant π‐basic subunits (15, 16) exhibited higher resolving efficacy, in particular towards the isopropyl esters of racemic N‐3,5‐dinitrobenzoyl‐α‐amino acids. Effective resolution of test racemates reveals the importance of the presence of the hydrogen bond donor amido group and the distance between the persubstituted benzene ring in 1 and the π‐basic naphthalene ring of (R)‐NEA. Chirality 11:722–730, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
(R)-1-phenylethanol is an important substance in fragrance and flavor industry. In this work, the reduction of acetophenone to (R)-1-phenylethanol in an aqueous medium was examined using Pichia capsulata as a whole-cell biocatalyst. Progress curve and initial rate measurements were used to obtain kinetic data. The experiments were carried out at pH 5, temperature of 25?°C, and in the presence of glucose to maintain in vivo regeneration of NADH. A model of the reversible reaction kinetics considering the substrate inhibition of the forward reaction was developed. Five kinetic parameters of this model were determined by a simultaneous fit of a reaction rate dependence on substrate concentration and 18 substrate and product concentration progress curves with very good accuracy. Equilibrium constant of the reaction and equilibrium conversion of acetophenone to (R)-1-phenylethanol were 13.7 and 93%, respectively.  相似文献   

13.
Introduction: This study determined the pharmacokinetics and pharmacodynamics of (R)‐ and (S)‐ketamine and (R)‐ and (S)‐norketamine following a 5‐day moderate dose, as a continuous (R,S)‐ketamine infusion in complex regional pain syndrome (CRPS) patients. Materials and methods: Ketamine was titrated to 10–40 mg/h and maintained for 5 days. (R)‐ and (S)‐Ketamine and (R)‐ and (S)‐norketamine pharmacokinetic and pharmacodynamic studies were performed. Blood samples were obtained on Day 1 preinfusion, and at 60–90, 120–150, 180–210, and 240–300 min after the start of the infusion, on Days 2, 3, 4, 5, and on Day 5 at 60 min after the end of infusion. The plasma concentrations of (R)‐ and (S)‐ketamine and (R)‐ and (S)‐norketamine were determined using enantioselective liquid chromatography–mass spectrometry. Results: Ketamine and norketamine levels stabilized 5 h after the start of the infusion. (R)‐Ketamine clearance was significantly lower resulting in higher steady‐state plasma concentrations than (S)‐ketamine. The first‐order elimination for (S)‐norketamine was significantly greater than that of (R)‐enantiomer. When comparing the pharmacokinetic parameters of the patients who responded to ketamine treatment with those who did not, no differences were observed in ketamine clearance and the first‐order elimination of norketamine. Conclusion: The results indicate that (R)‐ and (S)‐ketamine and (R)‐ and (S)‐norketamine plasma concentrations do not explain the antinociceptive activity of the drug in patients suffering from CRPS. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The application of helical poly[(S)‐3‐vinyl‐2,2'‐dihydroxy‐1, 1'‐binaphthyl] ( L* ) in the asymmetric borane reduction of prochiral ketones was studied. The results showed that L* had excellent catalytic activity as well as enantioselectivity, giving up to 96% yield and up to 99% enantiomeric excess (ee) of the corresponding secondary alcohol at 25 °C. Moreover, L* can be easily recovered and reused without loss of catalytic activity. Chirality 27:422–424, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
For the first time, a method for enantiomer resolution of the anticonvulsant Galodif (1‐((3‐chlorophenyl)(phenyl)methyl) urea) by chiral HPLC was developed, whereas the enantiomeric composition of 1‐((3‐chlorophenyl)(phenyl)methyl) amine—precursor in Galodif synthesis—cannot be resolved by this method. However, starting 1‐((3‐chlorophenyl)(phenyl)methyl) amine quantitatively forms diastereomeric N‐((3‐chlorophenyl)(phenyl)methyl)‐1‐camphorsulfonamides in reaction with chiral (1R)‐(+)‐ or (1S)‐(?)‐camphor‐10‐sulfonyl chlorides. The diastereomeric ratio of obtained camphorsulfonamides can be easily determined by NMR 1H and 13C spectroscopy. The DFT calculations of specific rotation of Galodif enantiomers showed good agreement with experimental data. The absolute configuration of enantiomers was proposed for the first time.  相似文献   

16.
The resolution of seven enantiomeric pairs of chiral derivatives of xanthones (CDXs) on (S,S)‐Whelk‐O1 and l ‐phenylglycine chiral stationary phases (CSPs) was systematically investigated using multimodal elution conditions (normal‐phase, polar‐organic, and reversed‐phase). The (S,S)‐Whelk‐O1 CSP, under polar‐organic conditions, demonstrated a very good power of resolution for the CDXs possessing an aromatic moiety linked to the stereogenic center with separation factor and resolution factor ranging from 1.91 to 7.55 and from 6.71 to 24.16, respectively. The chiral recognition mechanisms were also investigated for (S,S)‐Whelk‐O1 CSP by molecular docking technique. Data regarding the CSP–CDX molecular conformations and interactions were retrieved. These results were in accordance with the experimental chromatographic parameters regarding enantioselectivity and enantiomer elution order. The results of the present study fulfilled the initial objectives of enantioselective studies of CDXs and elucidation of intermolecular CSP–CDX interactions. Chirality 25:89–100, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
It was shown that racemic (±)‐ 2 [1′‐benzyl‐3‐(3‐fluoropropyl)‐3H‐spiro[[2]benzofuran‐1,4′‐piperidine], WMS‐1813 ] represents a promising positron emission tomography (PET) tracer for the investigation of centrally located σ1 receptors. To study the pharmacological activity of the enantiomers of 2 , a preparative HPLC separation of (R)‐2 and (S)‐2 was performed. The absolute configuration of the enantiomers was determined by CD‐spectroscopy together with theoretical calculations of the CD‐spectrum of a model compound. In receptor binding studies with the radioligand [3H]‐(+)‐pentazocine, (S)‐2 was thrice more potent than its (R)‐configured enantiomer (R)‐2 . The metabolic degradation of the more potent (S)‐enantiomer was considerably slower than the metabolism of (R)‐2 . The structures of the main metabolites of both enantiomers were elucidated by determination of the exact mass using an Orbitrap‐LC‐MS system. These experiments showed a stereoselective biotransformation of the enantiomers of 2 . Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Chemoselective reduction of one isomer of the 1-menthylester of 1,3-oxathiolan-5-one-2-carboxylic acid produces a mixture of four lactol diastereomers from which the title compound was isolated after acylation. The isomeric purity and absolute stereochemistry were determined by spectroscopic methods, chiral HPLC techniques, and conversion to (?)-2′-deoxy-3′-thiacytidine (Lamivudine, 3TCTM). © 1994 Wiley-Liss, Inc.  相似文献   

19.
An (R)-1-phenyl-1,3-propanediol-producing enzyme was purified from Trichosporon fermentans AJ-5152. It was NADPH-dependent and converted 3-hydroxy-1-phenylpropane-1-one (HPPO) to (R)-1-phenyl-1,3-propanediol [(R)-PPD] with anti-Prelog’s specificity. It showed maximum activity at pH 7.0 and 40 °C. Its K m and V max values toward HPPO were 20.1 mM and 3.4 μmol min?1 mg protein?1 respectively. The relative molecular weight of the enzyme was estimated to be 68,000 on gel filtration and 32,000 on SDS-polyacrylamide gel electrophoresis. An (R)-PPD-producing reaction using the (R)-PPD-producing enzyme and an NADPH recycling system was carried out by successive feeding of HPPO. A total (R)-PPD yield of 8.9 g/l was produced in 16 h. The molar yield was 76%, and the optical purity of the (R)-PPD produced was over 99% e.e.  相似文献   

20.
Ooencyrtus nezarae (Hymenoptera: Encyrtidae) is an egg parasitoid of bean bug Riptortus pedestris (Hemiptera: Alydidae) which is a major pest of beans. Females of O. nezarae are attracted to (E)‐2‐hexenyl (Z)‐3‐hexenoate (EZ), one of the components of aggregation pheromone of Rpedestris. Effects of three isomers (ZE, EE and ZZ) of EZ on the attractiveness of O. nezarae were tested using electroantennography (EAG) and field bioassays. EAG analyses revealed that the response of O. nezarae to ZE was significantly higher than those to air, hexane and two other isomers, even though the response was lower than that to EZ. ZE affected the attractiveness of EZ dose‐dependently in the field. Addition of ZE (100 mg) to EZ (10 mg) caused a significant reduction in the catches of O. nezarae females. Single or binary addition of two other isomers (EE and ZZ) to EZ could not decrease or increase significantly the number of O. nezarae catches of EZ. Even though addition of ZZ (10, 50 or 100 mg) to EZ (10 mg) caused dose‐dependent reduction in the number of O. nezarae female catches, the reductions were not significantly different from that of EZ. EZ and its three isomers were not attractive to O. nezarae males at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号