首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A comparison of the enantiomeric resolution of (+/-)-threo-methylphenidate (MPH) (Ritalin) was achieved on different polysaccharide based chiral stationary phases. The mobile phase used was hexane-ethanol-methanol-trifluoroacetic acid (480:9.75:9.75:0.5, v/v/v/v). Benzoic acid and phenol were used as the mobile phase additives for the enantiomeric resolution of MPH on Chiralcel OB column only. The alpha values for the resolved enantiomers were 1.34, 1.29, 1.30, and 1.24 on Chiralpak AD, Chiralcel OD, Chiralcel OB (containing 0.2 mM benzoic acid in mobile phase), and Chiralcel OB (containing 0.2 mM phenol in mobile phase) columns, respectively. The R(s) values were 1.82, 1.53, 1.19, and 1.10 on Chiralpak AD, Chiralcel OD, Chiralcel OB (containing 0.2 mM benzoic acid in mobile phase), and Chiralcel OB (containing 0.2 mM phenol in mobile phase), respectively. The role of benzoic acid and phenol as mobile phase additives is discussed.  相似文献   

2.
Four chiral stationary phases (CSPs) derived from N-(3,5-dinitrobenzoyl)tyrosine have been synthesized. They differ by the substituent nature (methyl, ethyl, isopropyl, tert-butyl) of the aliphatic amide function. The enantiorecognition ability of these CSPs was evaluated with 10 racemates. For the majority of them, the stereoselectivity increases with the steric hindrance of the substituent. The chiral selector enantiomeric separation on the resulting CSPs has evidenced a reversal of elution order only for CS 4 on CSP 4 (tert-butyl substituent), suggesting a change in its conformation.  相似文献   

3.
A macrocyclic glycopeptide antibiotic containing a hydrophobic “tail” is covalently attached to silica gel via linkage chains. This material is extensively evaluated as a chiral stationary phase (CSP) for HPLC. The relevant structural features of the teicoplanin molecule which make it an effective chiral selector are discussed. The teicoplanin CSP appears to have excellent enantioselectivity for native amino acids, peptides, α-hydroxycarboxylic acids, and a variety of neutral analytes including cyclic amides and amines. Enantio-separations can be achieved in the reversed phase, normal phase, and “polar-organic” modes. This chiral selector is stable and the integrity of the CSP is excellent in all separation modes. Hence it can be considered a highly effective multimodal column. Optimization of these separations is discussed in terms of both selectivity and efficiency. Results indicate that the surface loading of the chiral selector affects all relevant separation parameters. A hypothesis is proposed to explain the enhanced efficiency obtained when using teicoplanin CSPs with higher surface coverage. It appears that teicoplanin is a widely applicable, highly effective chiral selector for HPLC enantioseparations. © 1995 Wiley-Liss, Inc.  相似文献   

4.
The direct HPLC enantioseparation of Mianserin and a series of aptazepine derivatives is accomplished on polysaccharide-based chiral stationary phases (CSPs). The resolutions are performed on the coated-type Chiralcel OD and Chiralpak AD CSPs and on the first commercially available immobilized-type Chiralpak IA CSP, in normal-phase and polar-organic modes. The complete separation of enantiomers of all racemates investigated was successfully achieved under at least one of CSP/eluent combinations employed. Pure alcohols such ethanol or 2-propanol, with a fixed percentage of DEA added, serve as valuable alternatives to the more common n-hexane-based normal-phase eluents in resolution of Mianserin on the AD CSP. In order to study the chiroptical properties of aptazepine derivatives, chromatographic resolutions are carried out at semipreparative scale using Chiralpak AD and Chiralpak IA as CSPs. Nonconventional dichloromethane-based eluents have permitted to expand the chiral resolving ability of the immobilized Chiralpak IA CSP and to perform mg-scale enantioseparations with an analytical-size column. Assignment of the absolute configuration of the separated enantiomers is empirically established by comparing their chiroptical data with those of structurally related Mianserin.  相似文献   

5.
The development of high-performance liquid chromatography methods on polysaccharide-based stationary phases (cellulose or amylose derivatives) has permitted preparative enantioseparations of various 6-[1(imidazol-1-yl)-1-phenylmethyl]-3-methyl-1,3-benzoxazol-2(3H)-one and 6-[1(imidazol-1-yl)-1-phenylmethyl]-3-methyl-1,3-benzothiazol-2(3H)-one, aromatase inhibitors, with satisfactory yields. Analytical enantioseparation methods using both UV and evaporative light-scattering detection (ELSD) were validated to determine the enantiomeric purity of these compounds. Using UV detection, linear calibration curves in the range from 4 x 10(-6) to 4.8 x 10(-4) M range were obtained; repeatability, limits of detection (LD), and quantification (LQ) were determined: LD varied, for the various solutes, from 1 to 80 microg/l and from 2.05 to 10.05 mg/l with UV detection and ELSD, respectively. Single-crystal X-ray analysis was successful in determining the absolute configuration of the individual enantiomers. The relationship between retention order and absolute configuration of the enantiomers was established.  相似文献   

6.
Three fungicidal triazolyl alcohols (triadimenol, hexaconazole, and cis/trans‐1‐4‐chlorophenyl‐2‐1H‐1,2,4‐triazol‐1‐yl‐cycloheptanol) were completely separated into enantiomers by chiral HPLC using polysaccharide‐based chiral stationary phases. A better separation was achieved on cellulose and amylose carbamate phases compared with a cellulose ester phase. Peak shapes were almost symmetrical except for two cases, where tailing of the first eluted enantiomer and unusual symmetric peak broadening were observed. The effect of eluents on enantioseparation was also investigated. Chirality 11:195–200, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
The aim of the paper is to describe a new synthesis route to obtain synthetic optically active clausenamidone and neoclausenamidone and then use high‐performance liquid chromatography (HPLC) to determine the optical purities of these isomers. In the process, we investigated the different chromatographic conditions so as to provide the best separation method. At the same time, a thermodynamic study and molecular simulations were also carried out to validate the experimental results; a brief probe into the separation mechanism was also performed. Two chiral stationary phases (CSPs) were compared with separate the enantiomers. Elution was conducted in the organic mode with n‐hexane and iso‐propanol (IPA) (80/20 v/v) as the mobile phases; the enantiomeric excess (ee) values of the synthetic R‐clausenamidone and S‐clausenamidone and R‐neoclausenamidone and S‐ neoclausenamidone were higher than 99.9%, and the enantiomeric ratio (er) values of these isomers were 100:0. Enantioselectivity and resolution (α and Rs, respectively) levels with values ranging from 1.03 to 1.99 and from 1.54 to 17.51, respectively, were achieved. The limits of detection and quantitation were 3.6 to 12.0 and 12.0 to 40.0 ug/mL, respectively. In addition, the thermodynamics study showed that the result of the mechanism of chiral separation was enthalpically controlled at a temperature ranging from 288.15 to 308.15 K. Furthermore, docking modeling showed that the hydrogen bonds and π‐π interactions were the major forces for chiral separation. The present chiral HPLC method will be used for the enantiomeric resolution of the clausenamidone derivatives.  相似文献   

8.
The development of high-performance liquid chromatography (HPLC) methods using derivatized amylose chiral stationary phases has permitted preparative enantioseparations of substituted 4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives with satisfactory yields. These compounds constitute new potent selective agonists of the cannabinoid CB(2) receptor. Analytical enantioseparation methods using UV detection were validated to determine the enantiomeric purity of these compounds. Linear calibration curves in the range from 0.18 to 0.40 mM were obtained; repeatability, limits of detection (LOD), and quantification (LOQ) were determined: LOD varied, for the various solutes, from 0.5 to 1.2 μM. All the separated compounds were prepared with high enantiomeric purities superior to 99.3% Absolute configuration of the enantiomers was unequivocally established by single crystal X-ray diffraction method and correlated to the chiroptical properties of isolated enantiomers.  相似文献   

9.
The small column size (0.3 mm i.d. x 15 cm) used in microscale HPLC contains only a small fraction (<1%) of the chromatographic packing material of a typical analytical HPLC column. Consequently, chromatographic stationary phases that are prohibitively expensive in conventional HPLC, owing either to synthetic complexity or costly starting materials, may become commercially viable in the microscale format. To illustrate this point, a previously described, synthetically complex, crown ether chiral stationary phase was prepared and evaluated in the microscale format, showing excellent separation of the enantiomers of underivatized amine analytes.  相似文献   

10.
《Chirality》2017,29(6):239-246
The enantioselective potential of two polysaccharide‐based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris‐(3,5‐dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose‐based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose‐based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose‐based chiral stationary phase were achieved particularly with propane‐2‐ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO2, respectively. Methanol and basic additive isopropylamine were preferred on amylose‐based chiral stationary phase. The complementary enantioselectivity of the cellulose‐ and amylose‐based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest.  相似文献   

11.
Yin CQ  He BJ  Huang SH  Zhang JY  Bai ZW  Li ZY 《Chirality》2008,20(7):846-855
Four dendrimers were synthesized on aminopropyl-modified silica gel using methyl acrylate and ethylene diamine as building blocks by divergent method. Four generations of chiral stationary phases (CSPs) were prepared by coupling of L-2-(p-toluenesulfonamido)-3-phenylpropionyl chloride to corresponding dendrimers. The derivatives prepared on silica gel were characterized by FT-IR, (1)H NMR, and elemental analysis. The selector loadings of these four generations of CSPs generally showed a decrease tendency with the increase of generation numbers of dendrimers. The enantioseparation properties of these CSPs were preliminarily investigated by high-performance liquid chromatography. The CSP derived from the three-generation dendrimer exhibited the best enantioseparation capability. Effects of the mobile phase composition and molecular structures of racemic mixtures on enantioseparation were further studied.  相似文献   

12.
A convenient method using a fluorogenic agent, 4‐chloro‐7‐nitro‐1,2,3‐benzoxadiazole (NBD‐Cl), was developed for enantiomer separation of chiral aliphatic amines including amino alcohols by normal high‐performance liquid chromatography. The enantiomer separation of chiral aliphatic amines as NBD derivatives was performed on six covalently bonded and four coated‐type polysaccharide‐derived chiral stationary phases (CSPs) under simultaneous ultraviolet (UV) and fluorescence detection (FLD). Among the covalently bonded CSPs, Chiralpak IE showed the best enantiomer separation for most analytes. The other CSPs also showed good enantioselectivity except for Chiralpak IB. On the other hand, Chiralpak AD‐H and Amylose‐1 generally exhibited better enantiomer separation of NBD derivatized chiral amines among the coated CSPs. The developed analytical technique was also applied to determine the optical purity of commercially available (R)‐ and (S)‐leucinol; the impurity was found to be 0.06%. The developed method was validated and proved to be an accurate, precise, sensitive, and selective method suitable for separation of chiral aliphatic amines as NBD derivatives under simultaneous UV and FLD.  相似文献   

13.
Chromatographic applications of three novel chiral stationary phases (CSPs) deriving from (S)-(N)-(3,5-dinitrobenzoyl)tyrosine are reported, under liquid chromatographic (LC) and subscritical fluid chromatographic (SubFC) conditions. Two grafting modes of the chiral moiety have been experimented starting either from γ-mercaptopropyl-silanized (type 1) or γ-aminopropyl-silanized (type 2) silica gels. For type 2 CSPs an evaluation of the stability of the amide linkage was achieved by means of SubFC; the relative contriution of ionic and covalent bindings to the ciral recognitio aility was then outlined. The chromatographic properties of these CSPs were compared with those of the corresponding CSPs deriving from phenylglycine, p-hydroxyphenylglycine, and phenylalanine for the resolution of some tertiary phosphine oxide, naphthoyl amide, and α-methylene γ-lactam enantiomers. Some simple requirements regarding the solute and CSP structures for chiral recognition ability can be inferred from these results. In addition, the resolutio of π-acid α-N-(3,5-dinitrobenzoyl)amino esters was investigated on these π-acid CSPs. An example of preparative scale chromatography is also presented.  相似文献   

14.
Vancomycin is one of a family of related macrocyclic glycopeptide antibiotics that were discovered by scientists at the Eli Lilly Company in the 1950s. It has been used to treat severe staphylococcal infections, particularly when bacterial resistance to other antibiotics has developed. Vancomycin is a naturally occurring chiral compound and has a number of stereogenic centers. Furthermore, it contains a variety of functionalities that are known to be useful for enantioselective interactions (e.g., hydrogen bonding groups, hydrophobic pockets, aromatic groups, amide linkages, etc.). The physicochemical properties of vancomycin, including its stability in solution, are discussed as they pertain to capillary electrophoresis. Over 100 racemates were resolved including many nonsteroidal antiinflammatory drugs, antineoplastic compounds and N-derivatized amino acids. Many of these compounds had very high resolution factors. Optimization and the effect of different experimental parameters on the enantioselective separations are discussed. © 1994 Wiley-Liss, Inc.  相似文献   

15.
To obtain milligram amounts of the enantiomers of benzoxazolinone derivatives to be tested for binding to adrenergic sites, analytical HPLC methods using derivatized amylose chiral stationary phases were developed for the direct enantioseparation of benzoxazolinone aminoalcohols and their aminoketone precursors, derivatives with one or two chirals centers. The separations were made using normal phase methodology with a mobile phase of n‐hexane‐alcohol (ethanol, 1‐propanol, or 2‐propanol) in various proportions, and silica‐based amylose (tris‐3, 5‐dimethylphenylcarbamate) Chiralpak AD and (tris‐(S)‐1‐phenylethylcarbamate) Chiralpak AS columns. The effects of concentration of various aliphatic alcohols in the mobile phase were studied. The best separation was achieved on Chiralpak AS, so preparative HPLC was set up with this chiral stationary phase using a mobile phase consisting of n‐hexane‐alcohol using isocratic conditions and multiple repetitive injections. Physicochemicals properties of enantiomers were reported The effect of structural features of the solutes on discrimination between the enantiomers was examined. Limit of detection (LD) and limit of quantification (LQ) were determined using both ultra‐violet (UV) and evaporative light‐scattering detection (ELSD). Chirality, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
We recently reported a new C3‐symmetric (R)‐phenylglycinol N‐1,3,5‐benzenetricarboxylic acid‐derived chiral high‐performance liquid chromatography (HPLC) stationary phase (CSP 1) that demonstrated better results as compared to a previously described N‐3,5‐dintrobenzoyl (DNB) (R)‐phenylglycinol‐derived CSP. Over a decade ago, (S)‐leucinol, (R)‐phenylglycine, and (S)‐leucine derivatives were used as the starting materials of 3,5‐DNB‐based Pirkle‐type CSPs for chiral separation. In this study, three new C3‐symmetric CSPs (CSP 2, 3, and 4) were prepared by combining the ideas and results mentioned above. Here we describe the synthetic procedures and applications of the new C3‐symmetric CSPs (CSP 2–CSP 4).  相似文献   

17.
Vancomycin selectively immobilized to silica via either one of its two amino groups has been investigated and compared with columns made from native vancomycin. The chemical modification of vancomycin prior to immobilization involved protection of one amino group as a 9‐fluorenylmethyl carbamate. The immobilization and the subsequent cleavage of the protecting group was performed on‐column. The types of compounds that can be separated with the vancomycin chiral stationary phases resemble those separated previously by capillary electrophoresis and thin‐layer chromatography. The protected chiral stationary phases were also investigated and in some cases very high enantioselectivity were obtained. One example of this is a separation of thalidomide with an α‐value as high as 5.4. The soft immobilization procedure preserves the structure of native vancomycin, in contrast to other approaches. Good repeatability and stability of the columns have also been obtained. Chirality 11:121–128, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
Patti A  Pedotti S  Sanfilippo C 《Chirality》2007,19(5):344-351
The direct HPLC enantiomeric separation of several ferrocenylalcohols on the commercially available Chiralcel OD and Chiralcel OJ columns has been evaluated in normal-phase mode. Almost all the compounds were resolved on one or both chiral stationary phases (CSPs) with separation factor (alpha) ranging from 1.06 to 2.88 while the resolution (R(s)) varied from 0.63 to 12.70 In the separation of the alpha-ferrocenylalcohols 1a-e and the phenyl analogues 2a-e, which were all resolved except 1c, a similar trend in the retention behavior for the two series of alcohols was evidenced and the selectivity was roughly complementary on the two investigated CSP. For three ferrocenylacohols, chosen as model compounds, the influence of the mobile phase composition and temperature on the enantioseparation were investigated and additional information on the chiral recognition mechanism were deduced from the chromatographic behavior of their acetylderivatives.  相似文献   

19.
A novel chiral stationary phase (CSP) derived from tyrosine is evaluated with regard to the first generation commercially available (S)-ChyRoSine-A CSP, under normalphase or reversed-phase liquid chromatographic (NPLC or RPLC) and subcritical fluid chromatographic (SubFC) conditions. The complete scope of application of these CSPs is reviewed. The novel CSP, which bears a bulkier functional group, displays a higher enantiorecognition ability than previously described (S)-ChyRoSine-A toward about 15 families of racemates, whatever the mobile phase conditions. The direct enantiomeric separation of 1,2-amino-alcohols (β-blockers) is carried out on both CSPs. Facile separations are achieved within short analysis times using SubFC mode, whereas very poor separations are obtained using NPLC mode. These results disagree with previous theories (interchangeability between NPLC and SubFC modes).  相似文献   

20.
Wang P  Liu D  Jiang S  Gu X  Zhou Z 《Chirality》2007,19(2):114-119
Amylopectin-tris(phenylcarbamate) was synthesized and coated to aminopropylsilica to prepare chiral stationary phase. The chiral separations of fungicide enantiomers were performed by the CSP using high-performance liquid chromatography. Mobile phase was n-hexane and isopropanol, and flow rate was 1.0 ml/min. Detection wavelength was 230 nm. The influence of the percentage of isopropanol in the mobile phase on the separations was studied. Twelve chiral fungicides were tested and seven of them were found to show stereoselectivity on the CSP. The enantiomers of metalaxyl and benalaxyl got near baseline separations and myclobutanil, hexconazole, tebuconazole, uniconazole, and paclobutrazol enantiomers were completely separated. The decreasing percentage of isopropanol in the mobile phase resulted in better separation and longer analysis time. The enantiomers were identified by a circular dichroism (CD) detector and the CD spectra of the individual enantiomers were also studied by online scanning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号