首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Niemann–Pick disease, type C1 (Npc1), is an atypical lysosomal storage disorder caused by autosomal recessive inheritance of mutations in Npc1 gene. In the Npc1 mutant mice (Npc1?/?), the initial manifestation is enlarged spleen, concomitant with free cholesterol accumulation. Telocytes (TCs), a novel type of interstitial cell, exist in a variety of tissues including spleen, presumably thought to be involved in many biological processes such as nursing stem cells and recruiting inflammatory cells. In this study, we found that the spleen is significantly enlarged in Npc1?/? mice, and the results from transmission electron microscopy examination and immunostaining using three different TCs markers, c‐Kit, CD34 and Vimentin revealed significantly increased splenic TCs in Npc1?/? mice. Furthermore, hematopoietic stem cells and macrophages were also elevated in Npc1?/? spleen. Taken together, our data indicate that splenic TCs might alleviate the progress of splenic malfunction via recruiting hematopoietic stem cells and macrophages.  相似文献   

3.
The goal of The Jackson Laboratory Neuroscience Mutagenesis Facility is to generate mouse models of human neurological disease. We describe three new models obtained from a three-generation screen for recessive mutations. Homozygous mutant mice from lines nmf2 and nmf5 exhibit hind limb paralysis and juvenile lethality. Homozygous nmf58 mice exhibit a less severe movement disorder that includes sustained dystonic postures. The mutations were mapped to the distal region of mouse Chromosome (Chr) 15. Failure to complement a mutant allele of a positional candidate gene, Scn8a, demonstrated that the mutations are new alleles of Scn8a. Missense mutations of evolutionarily conserved residues of the sodium channel were identified in the three lines, with the predicted amino acid substitutions N1370T, I1392F, and L1404H. These residues are located within the pore loop of domain 3 of sodium channel Nav1.6. The lethal phenotypes suggest that the new alleles encode proteins with partial or complete loss of function. Several human disorders are caused by mutation in the pore loop of domain 3 of paralogous sodium channel genes. Line nmf5 contains a second, independent mutation in the rd13 locus that causes a reduction in cell number in the outer nuclear layer of the retina. rd13 was mapped to the distal 4 Mb of Chr 15. No coding or splice site mutations were detected in Pde1b, a candidate gene for rd13. The generation of three independent Scn8a mutations among 1100 tested G3 families demonstrates that the Scn8a locus is highly susceptible to ENU mutagenesis. The new alleles of Scn8a will be valuable for analysis of sodium channel physiology and disease.(David A. Buchner and Kevin L. Seburn) These authors contributed equally.  相似文献   

4.
5.
Next‐generation genomic sequencing technologies have made it possible to directly map mutations responsible for phenotypes of interest via direct sequencing. However, most mapping strategies proposed to date require some prior genetic analysis, which can be very time‐consuming even in genetically tractable organisms. Here we present a de novo method for rapidly and robustly mapping the physical location of EMS mutations by sequencing a small pooled F2 population. This method, called Next Generation Mapping (NGM), uses a chastity statistic to quantify the relative contribution of the parental mutant and mapping lines to each SNP in the pooled F2 population. It then uses this information to objectively localize the candidate mutation based on its exclusive segregation with the mutant parental line. A user‐friendly, web‐based tool for performing NGM analysis is available at http://bar.utoronto.ca/NGM . We used NGM to identify three genes involved in cell‐wall biology in Arabidopsis thaliana, and, in a power analysis, demonstrate success in test mappings using as few as ten F2 lines and a single channel of Illumina Genome Analyzer data. This strategy can easily be applied to other model organisms, and we expect that it will also have utility in crops and any other eukaryote with a completed genome sequence.  相似文献   

6.
Wild‐type p53 functions as a tumour suppressor while mutant p53 possesses oncogenic potential. Until now it remains unclear how a single mutation can transform p53 into a functionally distinct gene harbouring a new set of original cellular roles. Here we show that the most common p53 cancer mutants express a larger number and higher levels of shorter p53 protein isoforms that are translated from the mutated full‐length p53 mRNA. Cells expressing mutant p53 exhibit “gain‐of‐function” cancer phenotypes, such as enhanced cell survival, proliferation, invasion and adhesion, altered mammary tissue architecture and invasive cell structures. Interestingly, Δ160p53‐overexpressing cells behave in a similar manner. In contrast, an exogenous or endogenous mutant p53 that fails to express Δ160p53 due to specific mutations or antisense knock‐down loses pro‐oncogenic potential. Our data support a model in which “gain‐of‐function” phenotypes induced by p53 mutations depend on the shorter p53 isoforms. As a conserved wild‐type isoform, Δ160p53 has evolved during millions of years. We thus provide a rational explanation for the origin of the tumour‐promoting functions of p53 mutations.  相似文献   

7.
AML1/RUNX1 point mutations have been identified in myelodysplastic syndrome (MDS) and MDS‐related acute myeloid leukemia (AML), or MDS/AML, and are distributed throughout the full length of AML1/RUNX1. Gene mutation is proposed to be one of the disease‐defining genetic abnormalities of MDS/AML. Most of the mutants lose trans‐activation potential, which leads to a loss of normal function indicating that AML1/RUNX1 dysfunction is one of the major pathogenic mechanisms of MDS/AML. However, N‐terminal in‐frame mutations (Ni‐type) and C‐terminal truncated mutations (Ct‐type) of AML1/RUNX1 show a dominant‐negative effect on the trans‐activation activity, suggesting that these types of mutants may have some oncogenic potential in addition to the loss of normal function. The patients with Ni‐type mutations have hypoplastic marrows with other genetic abnormalities, whereas the patients with Ct‐type mutations display hyperplastic marrows without other mutations. Although biological analysis using a mouse bone marrow transplantation model transduced with Ni‐type of D171N or Ct‐type of S291fsX300 mutants has partially confirmed the oncogenic ability of AML1 mutants, it could not explain the mutant specific clinical features of MDS/AML. Biological analysis using human CD34+ cells revealed that the two types exhibited distinct molecular mechanisms. Ni‐type shows differentiation block without cell growth, but additional BMI‐1‐expression resulted in increased blastic cells. In contrast, Ct‐type itself has proliferation ability. Thus, AML1/RUNX1 mutants play a central role in the pathogenesis of MDS/AML. Both AML1 mutants are initiating factors for MDS‐genesis by inhibiting differentiation of hematopoietic stem cells, and Ni‐type mutant requires acquisition of proliferation ability. J. Cell. Physiol. 220: 16–20, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Processing of double‐stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL‐effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi‐allelic double mutant for the two soya bean paralogous Double‐stranded RNA‐binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9‐generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ‐line transmissible. Furthermore, TALENs were used to generate a mutation within the soya bean Dicer‐like2 gene. CRISPR/Cas9 mutagenesis of the soya bean Dicer‐like3 gene and the GmHen1a gene was observed in the T0 generation, but these mutations failed to transmit to the T1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole‐genome sequencing to reveal a spectrum of non‐germ‐line‐targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops.  相似文献   

9.
Objective To test the hypothesis that the identification of mutation in the carboxypeptidase E (CPE) gene which leads to marked hyperproinsulinaemia is consistent with a possible role for mutations in CPE in the development of coronary heart disease. Methods The study subjects consisted of 51 consecutive patients (34 males and 17 females) who will undergo coronary angiography for suspected or known coronary atherosclerosis. Coronary heart disease (CHD) was defined as having a luminal diameter stenosis ≥50% in at least one of three major coronary arteries by coronary angiography or based on the Rose Questionnaire. The insulin and proinsulin level were measured using highly sensitive two-site sandwich ELISA methods. Screening for mutations of the eight exons of the CPE gene was performed by polymerase chain reaction followed by bidirectional sequencing. Results We scanned eight exons and exon–intron junctional region. Overall, we found 12 distinct variants in the intron region and three variants in the exon region. Among the 15 variants, 10 mutations were rare. The further explored study reveal that the above five non-rare variants would not affect the level of glucose, insulin, and proinsulin. However, the results suggest that the prevalence of the coronary heart disease was significant difference between the wild type group and mutant type group according to the A4545G (P = 0.020). The results from the logistic regression reveal that the subjects with the CPE mutation of A4545G, the odds ratio for the coronary heart disease was 0.196 (95% CI: 0.046 to 0.830, P = 0.027). Conclusions In the present study, the mutation of CPE gene would not affect the level of glucose, insulin, and proinsulin. The hypothesis of a possible role for mutations in CPE in the development of coronary heart disease needs further study.  相似文献   

10.
Research has established that mutations in highly conserved amino acids of the succinate dehydrogenase (SDH) complex in various fungi confer SDH inhibitor (SDHI) resistance. For Sclerotinia sclerotiorum (Lib.) de Bary, a necrotrophic fungus with a broad host range and a worldwide distribution, boscalid resistance has been attributed to the mutation H132R in the highly conserved SdhD subunit protein of the SDH complex. In our previous study, however, only one point mutation, A11V in SdhB (GCA to GTA change in SdhB), was detected in S. sclerotiorum boscalid‐resistant (BR) mutants. In the current study, replacement of the SdhB gene in a boscalid‐sensitive (BS) S. sclerotiorum strain with the mutant SdhB gene conferred resistance. Compared with wild‐type strains, BR and GSM (SdhB gene in the wild‐type strain replaced by the mutant SdhB gene) mutants were more sensitive to osmotic stress, lacked the ability to produce sclerotia and exhibited lower expression of the pac1 gene. Importantly, the point mutation was not located in the highly conserved sequence of the iron–sulfur subunit of SDH. These results suggest that resistance based on non‐conserved vs. conserved protein domains differs in mechanism. In addition to increasing our understanding of boscalid resistance in S. sclerotiorum, the new information will be useful for the development of alternative antifungal drugs.  相似文献   

11.
Campomelic dysplasia (CD; MIM 114290), an autosomal dominant skeletal malformation syndrome with XY sex reversal, is caused by heterozygous de novo mutations in and around the SOX9 gene on 17q. We report a patient with typical signs of CD, including sex reversal, who was, surprisingly, homozygous for the nonsense mutation Y440X. Since neither parent carried the Y440X mutation, possible mechanisms explaining the homozygous situation were a de novo mutation followed by uniparental isodisomy, somatic crossing over, or gene conversion. As the patient was heterozygous for six microsatellite markers flanking SOX9, uniparental isodisomy and somatic crossing over were excluded. Analysis of intragenic single-nucleotide polymorphisms suggested that the homozygous mutation arose by a mitotic gene conversion event involving exchange of at least 440 nucleotides and at most 2,208 nucleotides between a de novo mutant maternal allele and a wild-type paternal allele. Analysis of cloned alleles showed that homozygous mutant cells constituted about 80% of the leukocyte cell population of the patient, whereas about 20% were heterozygous mutant cells. Heterozygous Y440X mutations, previously described in three CD cases, have been identified in seven additional cases, thus constituting the most frequent recurrent mutations in SOX9. These patients frequently have a milder phenotype with longer survival, possibly because of the retention of some transactivation activity of the mutant protein on SOX9 target genes, as shown by cell transfection experiments. The fact that the patient survived for 3 months may thus be explained by homozygosity for a hypomorphic rather than a complete loss-of-function allele, in combination with somatic mosaicism. This is, to our knowledge, the first report of mitotic gene conversion of a wild-type allele by a de novo mutant allele in humans.  相似文献   

12.
A host of classical and molecular genetic tools make Drosophila a tremendous model for the dissection of gene activity. In particular, the FLP‐FRT technique for mitotic recombination has greatly enhanced gene loss‐of‐function analysis. This technique efficiently induces formation of homozygous mutant clones in tissues of heterozygous organisms. However, the dependence of the FLP‐FRT method on cell division, and other constraints, also impose limits on its effectiveness. We describe here the generation and testing of tools for Mutant Analysis by Rescue Gene Excision (MARGE), an approach whereby mutant cells are formed by loss of a rescue transgene in a homozygous mutant organism. Rescue‐transgene loss can be induced in any tissue or cell‐type and at any time during development or in the adult using available heat‐shock‐induced or tissue‐specific flippases, or combinations of UAS‐FLP with Gal4 and Gal80ts reagents. The simultaneous loss of a constitutive fluorescence marker (GFP or RFP) identifies the mutant cells. We demonstrate the efficacy of the MARGE technique by flip‐out (clonal and disc‐wide) of a Ubi‐GFP‐carrying construct in imaginal discs, and by inducing a known yki mutant phenotype in the Drosophila ovary.  相似文献   

13.
Lettuce (Lactuca sativa) seeds exhibit thermoinhibition, or failure to complete germination when imbibed at warm temperatures. Chemical mutagenesis was employed to develop lettuce lines that exhibit germination thermotolerance. Two independent thermotolerant lettuce seed mutant lines, TG01 and TG10, were generated through ethyl methanesulfonate mutagenesis. Genetic and physiological analyses indicated that these two mutations were allelic and recessive. To identify the causal gene(s), we applied bulked segregant analysis by whole genome sequencing. For each mutant, bulked DNA samples of segregating thermotolerant (mutant) seeds were sequenced and analyzed for homozygous single‐nucleotide polymorphisms. Two independent candidate mutations were identified at different physical positions in the zeaxanthin epoxidase gene (ABSCISIC ACID DEFICIENT 1/ZEAXANTHIN EPOXIDASE, or ABA1/ZEP) in TG01 and TG10. The mutation in TG01 caused an amino acid replacement, whereas the mutation in TG10 resulted in alternative mRNA splicing. Endogenous abscisic acid contents were reduced in both mutants, and expression of the ABA1 gene from wild‐type lettuce under its own promoter fully complemented the TG01 mutant. Conventional genetic mapping confirmed that the causal mutations were located near the ZEP/ABA1 gene, but the bulked segregant whole genome sequencing approach more efficiently identified the specific gene responsible for the phenotype.  相似文献   

14.
 Three mutations in the Arabidopsis thaliana gene encoding the alpha subunit of tryptophan synthase were isolated by selection for resistance to 5-methylanthranilate or 5-fluoroindole, toxic analogs of tryptophan pathway intermediates. Plants homozygous for trp3-1 and trp3-2 are light-conditional tryptophan auxotrophs, while trp3-100 is a more leaky mutant. Genetic complementation crosses demonstrated that the three mutations are allelic to each other, and define a new complementation group. All three mutants have decreased steady-state levels of tryptophan synthase alpha protein, and the trp3-100 polypeptide exhibits altered electrophoretic mobility. All three mutations were shown to be in the TSA1 (tryptophan synthase alpha subunit) structural gene by several criteria. Firstly, the trp3-1 mutation is linked to TSA1 on the bottom of chromosome 3. Secondly, the trp3-1 mutation was complemented when transformed with the wild-type TSA1 gene. Finally, DNA sequence analysis of the TSA1 gene revealed a single transition mutation in each trp3 mutant. Received: 28 May 1996 / Accepted: 19 June 1996  相似文献   

15.
Mutant populations are indispensable genetic resources for functional genomics in all organisms. However, suitable rice mutant populations, induced either by chemicals or irradiation still have been rarely developed to date. To produce mutant pools and to launch a search system for rice gene mutations, we developed mutant populations of Oryza sativa japonica cv. Taichung 65, by treating single zygotic cells with N-methyl-N-nitrosourea (MNU). Mutagenesis in single zygotes can create mutations at a high frequency and rarely forms chimeric plants. A modified TILLING system using non-labeled primers and fast capillary gel electrophoresis was applied for high-throughput detection of single nucleotide substitution mutations. The mutation rate of an M2 mutant population was calculated as 7.4 × 10−6 per nucleotide representing one mutation in every 135 kb genome sequence. One can expect 7.4 single nucleotide substitution mutations in every 1 kb of gene region when using 1,000 M2 mutant lines. The mutations were very evenly distributed over the regions examined. These results indicate that our rice mutant population generated by MNU-mutagenesis could be a promising resource for identifying mutations in any gene of rice. The modified TILLING method also proved very efficient and convenient in screening the mutant population. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Gene editing techniques are becoming powerful tools for modifying target genes in organisms. Although several methods have been developed to detect gene‐edited organisms, these techniques are time and labour intensive. Meanwhile, few studies have investigated high‐throughput detection and screening strategies for plants modified by gene editing. In this study, we developed a simple, sensitive and high‐throughput quantitative real‐time (qPCR)‐based method. The qPCR‐based method exploits two differently labelled probes that are placed within one amplicon at the gene editing target site to simultaneously detect the wild‐type and a gene‐edited mutant. We showed that the qPCR‐based method can accurately distinguish CRISPR/Cas9‐induced mutants from the wild‐type in several different plant species, such as Oryza sativa, Arabidopsis thaliana, Sorghum bicolor, and Zea mays. Moreover, the method can subsequently determine the mutation type by direct sequencing of the qPCR products of mutations due to gene editing. The qPCR‐based method is also sufficiently sensitive to distinguish between heterozygous and homozygous mutations in T0 transgenic plants. In a 384‐well plate format, the method enabled the simultaneous analysis of up to 128 samples in three replicates without handling the post‐polymerase chain reaction (PCR) products. Thus, we propose that our method is an ideal choice for screening plants modified by gene editing from many candidates in T0 transgenic plants, which will be widely used in the area of plant gene editing.  相似文献   

17.
Molecular identification of mutant alleles responsible for certain phenotypic alterations is a central goal of genetic analyses. In this study we describe a rapid procedure suitable for the identification of induced recessive and dominant mutations applied to two Zea mays mutants expressing a dwarf and a pale green phenotype, respectively, which were obtained through pollen ethyl methanesulfonate (EMS) mutagenesis. First, without prior backcrossing, induced mutations (single nucleotide polymorphisms, SNPs) segregating in a (M2) family derived from a heterozygous (M1) parent were identified using whole‐genome shotgun (WGS) sequencing of a small number of (M2) individuals with mutant and wild‐type phenotypes. Second, the state of zygosity of the mutation causing the phenotype was determined for each sequenced individual by phenotypic segregation analysis of the self‐pollinated (M3) offspring. Finally, we filtered for segregating EMS‐induced SNPs whose state of zygosity matched the determined state of zygosity of the mutant locus in each sequenced (M2) individuals. Through this procedure, combining sequencing of individuals and Mendelian inheritance, three and four SNPs in linkage passed our zygosity filter for the homozygous dwarf and heterozygous pale green mutation, respectively. The dwarf mutation was found to be allelic to the an1 locus and caused by an insertion in the largest exon of the AN1 gene. The pale green mutation affected the nuclear W2 gene and was caused by a non‐synonymous amino acid exchange in encoded chloroplast DNA polymerase with a predicted deleterious effect. This coincided with lower cpDNA levels in pale green plants.  相似文献   

18.
Fusarium graminearum is a causal agent of wheat scab disease and a producer of deoxynivalenol (DON) mycotoxins. Treatment with exogenous cyclic adenosine monophosphate (cAMP) increases its DON production. In this study, to better understand the role of the cAMP–protein kinase A (PKA) pathway in F. graminearum, we functionally characterized the PKR gene encoding the regulatory subunit of PKA. Mutants deleted of PKR were viable, but showed severe defects in growth, conidiation and plant infection. The pkr mutant produced compact colonies with shorter aerial hyphae with an increased number of nuclei in hyphal compartments. Mutant conidia were morphologically abnormal and appeared to undergo rapid autophagy‐related cell death. The pkr mutant showed blocked perithecium development, but increased DON production. It had a disease index of less than unity and failed to spread to neighbouring spikelets. The mutant was unstable and spontaneous suppressors with a faster growth rate were often produced on older cultures. A total of 67 suppressor strains that grew faster than the original mutant were isolated. Three showed a similar growth rate and colony morphology to the wild‐type, but were still defective in conidiation. Sequencing analysis with 18 candidate PKA‐related genes in three representative suppressor strains identified mutations only in the CPK1 catalytic subunit gene. Further characterization showed that 10 of the other 64 suppressor strains also had mutations in CPK1. Overall, these results showed that PKR is important for the regulation of hyphal growth, reproduction, pathogenesis and DON production, and mutations in CPK1 are partially suppressive to the deletion of PKR in F. graminearum.  相似文献   

19.
20.
The chocolate plumage color in chickens is due to a sex‐linked recessive mutation, choc, which dilutes eumelanin pigmentation. Because TYRP1 is sex‐linked in chickens, and TYRP1 mutations determine brown coat color in mammals, TYRP1 appeared as the obvious candidate gene for the choc mutation. By combining gene mapping with gene capture, a complete association was identified between the chocolate phenotype and a missense mutation leading to a His214Asn change in the ZnA zinc‐binding domain of the protein. A diagnostic test confirmed complete association by screening 428 non‐chocolate chickens of various origins. This is the first TYRP1 mutation described in the chicken. Electron microscopy analysis showed that melanosomes were more numerous in feather follicles of chocolate chickens but exhibited an abnormal structure characterized by a granular content and an irregular shape. A similar altered morphology was observed on melanosomes of another TYRP1 mutant in birds, the roux mutation of the quail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号