首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resolution methods applying (?)‐(4R,5R)‐4,5‐bis(diphenylhydroxymethyl)‐2,2‐dimethyldioxolane (“TADDOL”), (?)‐(2R,3R)‐α,α,α',α'‐tetraphenyl‐1,4‐dioxaspiro[4.5]decan‐2,3‐dimethanol (“spiro‐TADDOL”), as well as the acidic and neutral Ca2+ salts of (?)‐O,O'‐dibenzoyl‐ and (?)‐O,O'‐di‐p‐toluoyl‐(2R,3R)‐tartaric acid were extended for the preparation of 1‐n‐butyl‐3‐methyl‐3‐phospholene 1‐oxide in optically active form. In one case, the intermediate diastereomeric complex could be identified by single‐crystal X‐ray analysis. The absolute P‐configuration of the enantiomers of the phospholene oxide was also determined by comparing the experimentally obtained and calculated CD spectra. Chirality 26:174–182, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
As an example of acyclic P‐chiral phosphine oxides, the resolution of ethyl‐(2‐methylphenyl)‐phenylphosphine oxide was elaborated with TADDOL derivatives, or with calcium salts of the tartaric acid derivatives. Besides the study on the resolving agents, several purification methods were developed in order to prepare enantiopure ethyl‐(2‐methylphenyl)‐phenylphosphine oxide. It was found that the title phosphine oxide is a racemic crystal‐forming compound, and the recrystallization of the enantiomeric mixtures could be used for the preparation of pure enantiomers. According to our best method, the (R)‐ethyl‐(2‐methylphenyl)‐phenylphosphine oxide could be obtained with an enantiomeric excess of 99% and in a yield of 47%. Complete racemization of the enantiomerically enriched phosphine oxide could be accomplished via the formation of a chlorophosphonium salt. Characterization of the crystal structures of the enantiopure phosphine oxide was complemented with that of the diastereomeric intermediate. X‐ray analysis revealed the main nonbonding interactions responsible for enantiomeric recognition.  相似文献   

3.
Efficient preparation of (R)‐2‐chloromandelic acid (R)-1 based on a recycle process of resolution is described. In the process, the desired (R)-1 was obtained by coordination‐mediated resolution with D‐O,O'‐di‐(p‐toluoyl)‐tartaric acid in the presence of Ca2+. Meanwhile, the undesired (S)-1 could be racemized in the presence of sodium hydroxide and the product was suitable for further resolution. A carbanion mechanism for the racemization of (S)-1 is proposed. Chirality 27:281–285, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Flecainide, an antiarrythmic agent, and its analogs were resolved on a high performance liquid chromatographic chiral stationary phase (CSP) based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid with the use of a mobile phase consisting of methanol‐acetonitrile‐trifluoroacetic acid‐triethylamine (80/20/0.1/0.3, v/v/v/v). The chiral resolution was quite successful, the separation factors (α) and the resolutions (RS) for 20 analytes including flecainide being in the range of 1.19–1.82 and 1.73–6.80, respectively. The ortho‐substituent of the benzoyl group of analytes was found to cause decrease in the retention times of analytes probably because of the conformational deformation of analytes originated from the steric hindrance exerted by the ortho‐substituent. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The parallel kinetic resolution of racemic 2‐aryl‐2‐deuterio‐propionic and butanoic acids using an equimolar combination of quasi‐enantiomeric oxazolidin‐2‐ones is discussed. The levels of diastereoselectivity were high leading to enantiomerically pure D ‐labeled products in good yield. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Readily available L‐tartaric acid, which is a bidentate ligand with two chiral centers forming a seven‐membered chelate ring, was applied to the chiral ligand for the chiral nuclear magnetic resonance (NMR) shift reagent of samarium(III) formed in situ. This simple method does not cause serious signal broadening in the high magnetic field. Enantiomeric 13C and 1H NMR signals and enantiotopic 1H NMR signals of α‐amino acids were successfully resolved at pH 8.0 and the 1:3 molar ratio of Sm(NO3)3:L‐tartaric acid. It is elucidated that the enantiomeric signal resolution is attributed to the anisotropic magnetic environment for the enantiomers induced by the chiral L‐tartarato samarium(III) complex rather than differences in stability of the diastereomeric substrate adducts. The present 13C NMR signal resolution was also effective for the practical simultaneous analysis of plural kinds of DL‐amino acids. Chirality 27:353–357, 2015.© 2015 Wiley Periodicals, Inc.  相似文献   

7.
In this study, a new Pirkle‐type chiral column stationary phase for resolution of β‐methylphenylethyl amine was described by using activated Sepharose 4B as a matrix, L ‐tyrosine as a spacer arm, and an aromatic amine derivative of L ‐glutamic acid as a ligand. The binding capacities of the stationary phase were determined at different pH values (pH = 6, 7, and 8) using buffer solutions as mobile phase, and enantiomeric excess (ee) was determined by HPLC equipped with chiral column. The ee was found to be 47%. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
The resolution of seven enantiomeric pairs of chiral derivatives of xanthones (CDXs) on (S,S)‐Whelk‐O1 and l ‐phenylglycine chiral stationary phases (CSPs) was systematically investigated using multimodal elution conditions (normal‐phase, polar‐organic, and reversed‐phase). The (S,S)‐Whelk‐O1 CSP, under polar‐organic conditions, demonstrated a very good power of resolution for the CDXs possessing an aromatic moiety linked to the stereogenic center with separation factor and resolution factor ranging from 1.91 to 7.55 and from 6.71 to 24.16, respectively. The chiral recognition mechanisms were also investigated for (S,S)‐Whelk‐O1 CSP by molecular docking technique. Data regarding the CSP–CDX molecular conformations and interactions were retrieved. These results were in accordance with the experimental chromatographic parameters regarding enantioselectivity and enantiomer elution order. The results of the present study fulfilled the initial objectives of enantioselective studies of CDXs and elucidation of intermolecular CSP–CDX interactions. Chirality 25:89–100, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
《Chirality》2017,29(6):315-324
Chiral solid membranes of cellulose, sodium alginate, and hydroxypropyl‐β‐cyclodextrin were prepared for chiral dialysis separations. After optimizing the membrane material concentrations, the membrane preparation conditions and the feed concentrations, enantiomeric excesses of 89.1%, 42.6%, and 59.1% were obtained for mandelic acid on the cellulose membrane, p ‐hydroxy phenylglycine on the sodium alginate membrane, and p ‐hydroxy phenylglycine on the hydroxypropyl‐β‐cyclodextrin membrane, respectively. To study the optical resolution mechanism, chiral discrimination by membrane adsorption, solid phase extraction, membrane chromatography, high‐pressure liquid chromatography ultrafiltration were performed. All of the experimental results showed that the first adsorbed enantiomer was not the enantiomer that first permeated the membrane. The crystal structures of mandelic acid and p ‐hydroxy phenylglycine are the racematic compounds. We suggest that the chiral separation mechanism of the solid membrane is “adsorption – association – diffusion,” which is able to explain the optical resolution of the enantioselective membrane. This is also the first report in which solid membranes of sodium alginate and hydroxypropyl‐β‐cyclodextrin were used in the chiral separation of p ‐hydroxy phenylglycine.  相似文献   

10.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Enantiomeric separations of N‐phthaloyl (N‐PHT), N‐tetrachlorophthaloyl (N‐TCPHT), and N‐naphthaloyl (N‐NPHT) α‐amino acids and their esters were examined on several kinds of polysaccharide‐derived chiral stationary phases (CSPs). Resolution capability of CSPs was greater Chiralcel OF than the others for N‐PHT and N‐NPHT α‐amino acids and their esters. In N‐TCPHT α‐amino acids and their esters, good enantioselectivities showed Chiralcel OG for N‐TCPHT α‐amino acids, Chiralpak AD for N‐TCPHT α‐amino acid methyl esters, and Chiralcel OD for N‐TCPHT α‐amino acid ethyl esters, respectively. From the results of liquid chromatography and computational chemistry, it is concluded that l ‐form is preferred and more retained with electrostatic interaction in case of interaction between N‐PHT α‐amino acid derivatives and Chiralcel OF, N‐TCPHT α‐amino acid derivatives and Chiralcel OD, and N‐NPHT α‐amino acid derivatives and Chiracel OF. On the other hand, d ‐form is preferred and more retained with van der Waals interaction in case of interaction between N‐TCPHT α‐amino acid ester derivatives and Chiralcel OG and Chiralpak AD. Chirality 24:1037–1046, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
We report a new protecting agent ( 1 , Npys‐OPh(pF)) for 3‐nitro‐2‐pyridine (Npy) sulfenylation of amino, hydroxy, and thiol functional groups. Several Npys phenoxides were synthesized from Npys chloride (Npys‐Cl) and phenols in the presence of base in 1‐step reaction, and their ability for Npy‐sulfenylation was evaluated. As a result, 1 was selected as a new Npy‐sulfenylation agent with advantages including improved physicochemical stability, more controllable reactivity, and easier handling than the conventional protecting agent Npys‐Cl.  相似文献   

13.
《Chirality》2017,29(11):708-715
A liquid–liquid extraction resolution of 4‐chloro‐mandelic acid (4‐ClMA) was studied by using 2‐chloro‐N‐carbobenzyloxy‐L‐amino acid (2‐Cl‐Z‐AA) as a chiral extractant. Important factors affecting the extraction efficiency were investigated, including the type of chiral extractant, pH value of aqueous phase, initial concentration of chiral extractant in organic phase, initial concentration of 4‐ClMA in aqueous phase, and resolution temperature. It was observed that the concentration of (R)‐4‐ClMA was much higher than that of (S)‐4‐ClMA in organic phase due to a higher stability of the complex formed between (R)‐4‐ClMA and 2‐Cl‐Z‐AA. A separation factor (α) of 3.05 was obtained at 0.02 mol/L 2‐Cl‐Z‐Valine dissolved in dichloromethane, pH of 2.0, concentration of 4‐ClMA of 0.11 mmol/Land T of 296.7K.  相似文献   

14.
Chiral sulfoxides/N‐oxides (R)‐ 1 and (R,R)‐ 2 are effective chiral promoters in the enantioselective allylation of α‐keto ester N‐benzoylhydrazone derivatives 3a , 3b , 3c , 3d , 3e , 3f , 3g to generate the corresponding N‐benzoylhydrazine derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a , 4b were subsequently treated with SmI2, and the resulting amino esters 5a , 5b with LiOH to obtain quaternary α‐substituted α‐allyl α‐amino acids 6a , 6b , whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. Chirality 25:529–540, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The absolute configuration of three 4‐aryl‐3,4‐dihydro‐2(1H)‐pyrimidones (Biginelli compounds, DHPMs) was established by comparison of the typical circular dichroism (CD) spectra of individual enantiomers with reference samples of known absolute configuration. The enantiomers were obtained by semipreparative separation of racemic mixtures on a Chiralcel OD‐H chiral stationary phase. The method was used to establish the enantiopreference of various lipases in biocatalytic kinetic resolution experiments employing activated DHPM esters. Chirality 11:659–662, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
The liquid chromatographic separation of permethrin enantiomers on chiral β‐cyclodextrin‐based stationary phase has been investigated. All four enantiomers are obtained by using simple methanol and water mobile phase, under gradient mode. The method was optimized and validated. The relationship between temperature and chromatographic parameters: k′ (capacity factor), α (separation factor) and Rs (resolution factor) was studied. Van't Hoff's curves for each enantiomer were plotted for temperature range 288–318 K. It was noticed that the response factor ratio of permethrin isomers differ and calculated value is found to be 1.66 (cis/trans, for n = 5). This method has been used for determining permethrin enantiomer ratio for a few samples of working standards and one formulation. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
18.
Matriptase is an epithelia‐specific membrane‐anchored serine protease, and its dysregulation is highly related to the progression of a variety of cancers. Hepatocyte growth factor activator inhibitor‐1 (HAI‐1) inhibits matriptase activity through forming complex with activated matriptase. The balance of matriptase activation and matriptase/HAI‐1 complex formation determines the intensity and duration of matriptase activity. 3‐Cl‐AHPC, 4‐[3‐(1‐adamantyl)‐4‐hydroxyphenyl]‐3‐chlorocinnamic acid, is an adamantly substituted retinoid‐related molecule and a ligand of retinoic acid receptor γ (RARγ). 3‐Cl‐AHPC is of strong anti‐cancer effect but with elusive mechanisms. In our current study, we show that 3‐Cl‐AHPC time‐ and dose‐ dependently induces matriptase/HAI‐1 complex formation, leading to the suppression of activated matriptase in cancer cells and tissues. Furthermore, 3‐Cl‐AHPC promotes matriptase shedding but without increasing the activity of shed matriptase. Moreover, 3‐Cl‐AHPC inhibits matriptase‐mediated cleavage of pro‐HGF through matriptase/HAI‐1 complex induction, resulting in the suppression of pro‐HGF‐stimulated signalling and cell scattering. Although 3‐Cl‐AHPC binds to RARγ, its induction of matriptase/HAI‐1 complex is not RARγ dependent. Together, our data demonstrates that 3‐Cl‐AHPC down‐regulates matriptase activity through induction of matriptase/HAI‐1 complex formation in a RARγ‐independent manner, providing a mechanism of 3‐Cl‐AHPC anti‐cancer activity and a new strategy to inhibit abnormal matriptase activity via matriptase/HAI‐1 complex induction using small molecules.  相似文献   

19.
Diastereoselective addition of nitromethane to Boc‐D‐Phe‐H in the presence of sodium hydride in diethyl ether/hexane containing 15‐crown‐5 and subsequent N,O‐protection with 2,2‐dimethoxypropane gave trans‐oxazolidine in a diastereomeric ratio of >16:1. The oxazolidine was easily separated by column chromatography, which after Nef reaction was coupled to H‐Leu‐OtBu. The 8‐step synthesis afforded (?)‐bestatin in an overall yield of 24.7% after deprotection and ion exchange.  相似文献   

20.
Enzymatic synthesis of ascorbyl undecylenate, an unsaturated fatty acid ester of ascorbic acid, was reported with biomass‐derived 2‐methyltetrahydrofuran (MeTHF) as the cosolvent. Of the immobilized lipases tested, Candida antarctica lipase B (CAL‐B) showed the highest activity for enzymatic synthesis of ascorbyl undecylenate. Effect of reaction media on the enzymatic reaction was studied. The cosolvent mixture, t‐butanol‐MeTHF (1:4, v/v) proved to be the optimal medium, in which not only ascorbic acid had moderate solubility, but also CAL‐B showed a high activity, thus addressing the major problem of the solvent conflict for dissolving substrate and keeping satisfactory enzyme activity. In addition, the enzyme was much more stable in MeTHF and t‐butanol‐MeTHF (1:4) than in previously widely used organic solvents, t‐butanol, 2‐methyl‐2‐butanol, and acetone. The much higher initial reaction rate in this cosolvent mixture may be rationalized by the much lower apparent activation energy of this enzymatic reaction (26.6 vs. 38.1–39.1 kJ/mol) and higher enzyme catalytic efficiency (Vmax/Km, 8.4 vs. 1.3–1.4 h?1). Ascorbyl undecylenate was obtained with the yields of 84–89% and 6‐regioselectivity of >99% in t‐butanol‐MeTHF (1:4) at supersaturated substrate concentrations (60 and 100 mM) after 5–8 h. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1005–1011, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号