首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequency with which replication forks break down in all organisms requires that specific mechanisms ensure completion of genome duplication. In Escherichia coli a major pathway for reloading of the replicative apparatus at sites of fork breakdown is dependent on PriA helicase. PriA acts in conjunction with PriB and DnaT to effect loading of the replicative helicase DnaB back onto the lagging strand template, either at stalled fork structures or at recombination intermediates. Here we showed that PriB stimulates PriA helicase, acting to increase the apparent processivity of PriA. This stimulation correlates with the ability of PriB to form a ternary complex with PriA and DNA structures containing single-stranded DNA, suggesting that the known single-stranded DNA binding function of PriB facilitates unwinding by PriA helicase. This enhanced apparent processivity of PriA might play an important role in generating single-stranded DNA at stalled replication forks upon which to load DnaB. However, stimulation of PriA by PriB is not DNA structure-specific, demonstrating that targeting of stalled forks and recombination intermediates during replication restart likely resides with PriA alone.  相似文献   

2.
Arrest of replication forks by various internal and external threats evokes a myriad of cellular reactions, collectively known as DNA replication checkpoint responses. In bacteria, PriA is essential for restoration of stalled replication forks and recombinational repair of double-stranded DNA breaks and is a candidate sensor protein that may recognize arrested forks. Here, we report that PriA protein specifically recognizes 3' termini of arrested nascent DNA chains at model stalled replication forks in vitro. Mutations in the putative "3' terminus binding pocket" present in the N-terminal segment of PriA result in reduced binding to stalled replication fork structures and loss of its biological functions. The results suggest a mechanism by which stalled replication forks are recognized by a sensor protein for checkpoint responses.  相似文献   

3.
During origin-independent replisome assembly, the replication restart protein PriC prefers to load the replication fork helicase, DnaB, to stalled replication forks where there is a gap in the nascent leading strand. However, this activity can be obstructed if the 5'-end of the nascent lagging strand is near the template branch point. Here we provide biochemical evidence that the helicase activities of Rep and PriA function to unwind the nascent lagging strand DNA at such stalled replication forks. PriC then loads the replicative helicase, DnaB, onto the newly generated, single-stranded template for the purposes of replisome assembly and duplex unwinding ahead of the replication fork. Direct rescue of replication forks by the Rep-PriC and PriA-PriC pathways in this manner may contribute to genomic stability by avoiding the potential dangers of fork breakage inherent to recombination-dependent restart pathways.  相似文献   

4.
Escherichia coli PriA protein plays crucial roles in processing of arrested replication forks. PriA serves as a sensor/stabilizer for an arrested replication fork and eventually promotes restart of DNA replication through assembly of a primosome. PriA carries a 3' terminus binding pocket required for its high affinity binding to a specific arrested fork as well as for its biological functions. We show here that PriA binds to DNA in a manner either dependent on or independent of 3' terminus recognition. The former mode of binding requires the 3' terminus binding pocket present at the N-terminal half of the 181-residue DNA binding domain and exhibits specific bipartite interaction on the template DNA. The latter mode is independent of the pocket function, but requires the C-terminal half of the same domain. ATP hydrolysis activity of PriA can be stimulated in vitro by either of the two binding modes. We propose architecture of PriA bound to various arrested replication fork structures and discuss its implication in helicase activation and ATP hydrolysis.  相似文献   

5.
PriA helicase plays crucial roles in restoration of arrested replication forks. It carries a "3' terminus binding pocket" in its N-terminal DNA binding domain, which is required for high affinity binding of PriA to a fork carrying a 3'-end of a nascent leading strand at the branch. We show that the abrogation of the 3' terminus recognition either by a mutation in the 3' terminus binding pocket or by the bulky modification of the 3'-end leads to unwinding of the unreplicated duplex arm on this fork, causing potential fork destabilization. This indicates a critical role of the 3' terminus binding pocket of PriA in its "stable" binding at the fork for primosome assembly. In contrast, PriA unwinds the unreplicated duplex region on a fork without a 3'-end, potentially destabilizing the fork. However, this process is inhibited by RecG helicase, capable of regressing the fork until the 3'-end of the nascent leading strand reaches the branch. PriA now stably binds to this regressed fork, stabilizing it. Using a model arrest-fork-substrate, we reconstitute the above process in vitro with RecG and PriA proteins. Our results present a novel mechanism by which two helicases function in a highly coordinated manner to generate a structure in which an arrested fork is stabilized for further repair and/or replication restart.  相似文献   

6.
Primosomes are nucleoprotein assemblies designed for the activation of DNA replication forks. Their primary role is to recruit the replicative helicase onto single-stranded DNA. The "replication restart" primosome, defined in Escherichia coli, is involved in the reactivation of arrested replication forks. Binding of the PriA protein to forked DNA triggers its assembly. PriA is conserved in bacteria, but its primosomal partners are not. In Bacillus subtilis, genetic analysis has revealed three primosomal proteins, DnaB, DnaD, and DnaI, that have no obvious homologues in E. coli. Interestingly, they are involved in primosome function both at arrested replication forks and at the chromosomal origin. Our biochemical analysis of the DnaB and DnaD proteins unravels their role in primosome assembly. They are both multimeric and bind individually to DNA. Furthermore, DnaD stimulates DnaB binding activities. DnaD alone and the DnaD/DnaB pair interact specifically with PriA of B. subtilis on several DNA substrates. This suggests that the nucleoprotein assembly is sequential in the PriA, DnaD, DnaB order. The preferred DNA substrate mimics an arrested DNA replication fork with unreplicated lagging strand, structurally identical to a product of recombinational repair of a stalled replication fork.  相似文献   

7.
PriA helicase and SSB interact physically and functionally   总被引:5,自引:2,他引:3  
PriA helicase is the major DNA replication restart initiator in Escherichia coli and acts to reload the replicative helicase DnaB back onto the chromosome at repaired replication forks and D-loops formed by recombination. We have discovered that PriA-catalysed unwinding of branched DNA substrates is stimulated specifically by contact with the single-strand DNA binding protein of E.coli, SSB. This stimulation requires binding of SSB to the initial DNA substrate and is effected via a physical interaction between PriA and the C-terminus of SSB. Stimulation of PriA by the SSB C-terminus may act to ensure that efficient PriA-catalysed reloading of DnaB occurs only onto the lagging strand template of repaired forks and D-loops. Correlation between the DNA repair and recombination defects of strains harbouring an SSB C-terminal mutation with inhibition of this SSB–PriA interaction in vitro suggests that SSB plays a critical role in facilitating PriA-directed replication restart. Taken together with previous data, these findings indicate that protein–protein interactions involving SSB may coordinate replication fork reloading from start to finish.  相似文献   

8.
In eubacteria, PriA helicase detects the stalled DNA replication forks. This critical role of PriA is ascribed to its ability to bind to the 3' end of a nascent leading DNA strand in the stalled replication forks. The crystal structures in complexes with oligonucleotides and the combination of fluorescence correlation spectroscopy and mutagenesis reveal that the N-terminal domain of PriA possesses a binding pocket for the 3'-terminal nucleotide residue of DNA. The interaction with the deoxyribose 3'-OH is essential for the 3'-terminal recognition. In contrast, the direct interaction with 3'-end nucleobase is unexpected, considering the same affinity for oligonucleotides carrying the four bases at the 3' end. Thus, the N-terminal domain of PriA recognizes the 3'-end base in a base-non-selective manner, in addition to the deoxyribose and 5'-side phosphodiester group, of the 3'-terminal nucleotide to acquire both sufficient affinity and non-selectivity to find all of the stalled replication forks generated during DNA duplication. This unique feature is prerequisite for the proper positioning of the helicase domain of PriA on the unreplicated double-stranded DNA.  相似文献   

9.
Homologous recombination (HR) is a key pathway that repairs DNA double‐strand breaks (DSBs) and helps to restart stalled or collapsed replication forks. How HR supports replication upon genotoxic stress is not understood. Using in vivo and in vitro approaches, we show that the MMS22L–TONSL heterodimer localizes to replication forks under unperturbed conditions and its recruitment is increased during replication stress in human cells. MMS22L–TONSL associates with replication protein A (RPA)‐coated ssDNA, and the MMS22L subunit directly interacts with the strand exchange protein RAD51. MMS22L is required for proper RAD51 assembly at DNA damage sites in vivo, and HR‐mediated repair of stalled forks is abrogated in cells expressing a MMS22L mutant deficient in RAD51 interaction. Similar to the recombination mediator BRCA2, recombinant MMS22L–TONSL limits the assembly of RAD51 on dsDNA, which stimulates RAD51‐ssDNA nucleoprotein filament formation and RAD51‐dependent strand exchange activity in vitro. Thus, by specifically regulating RAD51 activity at uncoupled replication forks, MMS22L–TONSL stabilizes perturbed replication forks by promoting replication fork reversal and stimulating their HR‐mediated restart in vivo.  相似文献   

10.
Repetitive DNA is prone to replication fork stalling, which can lead to genome instability. Here, we find that replication fork stalling at telomeres leads to the formation of t‐circle‐tails, a new extrachromosomal structure that consists of circular telomeric DNA with a single‐stranded tail. Structurally, the t‐circle‐tail resembles cyclized leading or lagging replication intermediates that are excised from the genome by topoisomerase II‐mediated cleavage. We also show that the DNA damage repair machinery NHEJ is required for the formation of t‐circle‐tails and for the resolution of stalled replication forks, suggesting that NHEJ, which is normally constitutively suppressed at telomeres, is activated in the context of replication stress. Inhibition of NHEJ or knockout of DNA‐PKcs impairs telomere replication, leading to multiple‐telomere sites (MTS) and telomere shortening. Collectively, our results support a “looping‐out” mechanism, in which the stalled replication fork is cut out and cyclized to form t‐circle‐tails, and broken DNA is religated. The telomere loss induced by replication stress may serve as a new factor that drives replicative senescence and cell aging.  相似文献   

11.
12.
Initiation of bacteriophage Mu DNA replication by transposition requires the disassembly of the transpososome that catalyses strand exchange and the assembly of a replisome promoted by PriA, PriB, PriC and DnaT proteins, which function in the host to restart stalled replication forks. Once the molecular chaperone ClpX weakens the very tight binding of the transpososome to the Mu ends, host disassembly factors (MRFalpha-DF) promote the dissociation of the transpososome from the DNA template and the assembly of a new nucleoprotein complex. Prereplisome factors (MRFalpha-PR) further alter the complex, allowing PriA binding and loading of major replicative helicase DnaB onto the template promoted by the restart proteins. MRFalpha-PR is essential for DnaB loading by restart proteins even on the deproteinized Mu fork whereas MRFalpha-DF is not required on the deproteinized template. When the transition from transpososome to replisome was reconstituted using MRFalpha-DF and MRFalpha-PR, initiation of Mu DNA replication was strictly dependent upon added PriC and PriA helicase. In contrast, initiation on the deproteinized template was predominantly dependent upon PriB and did not require PriA's helicase activity. The results indicate that transition mechanisms beginning with the transpososome disassembly can determine the pathway of replisome assembly by restart proteins.  相似文献   

13.
The initiation of DNA synthesis on forked DNA templates is a vital process in the replication and maintenance of cellular chromosomes. Two proteins that promote replisome assembly on DNA forks have so far been identified. In phage T4 development the gene 59 protein (gp59) assembles replisomes at D-loops, the sites of homologous strand exchange. Bacterial PriA protein plays an analogous function, most probably restarting replication after replication fork arrest with the aid of homologous recombination proteins, and PriA is also required for phage Mu replication by transposition. Gp59 and PriA exhibit similar DNA fork binding activities, but PriA also has a 3' to 5' helicase activity that can promote duplex opening for replisome assembly. The helicase activity allows PriA's repertoire of templates to be more diverse than that of gp59. It may give PriA the versatility to restart DNA replication without recombination on arrested replication forks that lack appropriate duplex openings.  相似文献   

14.
The Smc5/6 structural maintenance of chromosomes complex is required for efficient homologous recombination (HR). Defects in Smc5/6 result in chromosome mis‐segregation and fragmentation. By characterising two Schizosaccharomyces pombe smc6 mutants, we define two separate functions for Smc5/6 in HR. The first represents the previously described defect in processing recombination‐dependent DNA intermediates when replication forks collapse, which leads to increased rDNA recombination. The second novel function defines Smc5/6 as a positive regulator of recombination in the rDNA and correlates mechanistically with a requirement to load RPA and Rad52 onto chromatin genome‐wide when replication forks are stably stalled by nucleotide depletion. Rad52 is required for all HR repair, but Rad52 loading in response to replication fork stalling is unexpected and does not correlate with damage‐induced foci. We propose that Smc5/6 is required to maintain stalled forks in a stable recombination‐competent conformation primed for replication restart.  相似文献   

15.
Reactivation of stalled replication forks requires specialized mechanisms that can recognize the fork structure and promote downstream processing events. Fork regression has been implicated in several models of fork reactivation as a crucial processing step that supports repair. However, it has also been suggested that regressed forks represent pathological structures rather than physiological intermediates of repair. To investigate the biological role of fork regression in bacteriophage T4, we tested several mechanistic models of regression: strand exchange‐mediated extrusion, topology‐driven fork reversal and helicase‐mediated extrusion. Here, we report that UvsW, a T4 branch‐specific helicase, is necessary for the accumulation of regressed forks in vivo, and that UvsW‐catalysed regression is the dominant mechanism of origin‐fork processing that contributes to double‐strand end formation. We also show that UvsW resolves purified fork intermediates in vitro by fork regression. Regression is therefore part of an active, UvsW‐driven pathway of fork processing in bacteriophage T4.  相似文献   

16.
Replication forks that collapse upon encountering a leading strand lesion are reactivated by a recombinative repair process called replication restart. Using rolling circle DNA substrates to model replication forks, we examine the fate of the helicase and both DNA polymerases when the leading strand polymerase is blocked. We find that the helicase continues over 0.5 kb but less than 3 kb and that the lagging strand DNA polymerase remains active despite its connection to a stalled leading strand enzyme. Furthermore, the blocked leading strand polymerase remains stably bound to the replication fork, implying that it must be dismantled from DNA in order for replication restart to initiate. Genetic studies have identified at least four gene products required for replication restart, RecF, RecO, RecR, and RecA. We find here that these proteins displace a stalled polymerase at a DNA template lesion. Implications of these results for replication fork collapse and recovery are discussed.  相似文献   

17.
Rescue of arrested and collapsed replication forks is essential for maintenance of genomic integrity. One system for origin of replication-independent loading of the DnaB replicative helicase and subsequent replisome reassembly requires the structure-specific recognition factor PriA and the assembly factors PriB and DnaT. Here, we provide biochemical evidence for an alternate system for DnaB loading that requires only PriC. Furthermore, the choice of which system is utilized during restart is dictated by the nature of the structure of the stalled replication fork. PriA-dependent reactions are most robust on fork structures with no gaps in the leading strand, such as is found at the junction of a D loop, while the PriC-dependent system preferentially utilizes fork structures with large gaps in the leading strand. These observations suggest that the type of initial damage on the DNA template and how the inactivated fork is processed ultimately influence the choice of enzymatic restart pathway.  相似文献   

18.
BLM, the helicase defective in Bloom syndrome, is part of a multiprotein complex that protects genome stability. Here, we show that Rif1 is a novel component of the BLM complex and works with BLM to promote recovery of stalled replication forks. First, Rif1 physically interacts with the BLM complex through a conserved C‐terminal domain, and the stability of Rif1 depends on the presence of the BLM complex. Second, Rif1 and BLM are recruited with similar kinetics to stalled replication forks, and the Rif1 recruitment is delayed in BLM‐deficient cells. Third, genetic analyses in vertebrate DT40 cells suggest that BLM and Rif1 work in a common pathway to resist replication stress and promote recovery of stalled forks. Importantly, vertebrate Rif1 contains a DNA‐binding domain that resembles the αCTD domain of bacterial RNA polymerase α; and this domain preferentially binds fork and Holliday junction (HJ) DNA in vitro and is required for Rif1 to resist replication stress in vivo. Our data suggest that Rif1 provides a new DNA‐binding interface for the BLM complex to restart stalled replication forks.  相似文献   

19.
Accurate handling of stalled replication forks is crucial for the maintenance of genome stability. RAD51 defends stalled replication forks from nucleolytic attack, which otherwise can threaten genome stability. However, the identity of other factors that can collaborate with RAD51 in this task is poorly elucidated. Here, we establish that human Werner helicase interacting protein 1 (WRNIP1) is localized to stalled replication forks and cooperates with RAD51 to safeguard fork integrity. We show that WRNIP1 is directly involved in preventing uncontrolled MRE11‐mediated degradation of stalled replication forks by promoting RAD51 stabilization on ssDNA. We further demonstrate that replication fork protection does not require the ATPase activity of WRNIP1 that is however essential to achieve the recovery of perturbed replication forks. Loss of WRNIP1 or its catalytic activity causes extensive DNA damage and chromosomal aberrations. Intriguingly, downregulation of the anti‐recombinase FBH1 can compensate for loss of WRNIP1 activity, since it attenuates replication fork degradation and chromosomal aberrations in WRNIP1‐deficient cells. Therefore, these findings unveil a unique role for WRNIP1 as a replication fork‐protective factor in maintaining genome stability.  相似文献   

20.
The PriA protein of Escherichia coli plays a key role in the rescue of replication forks stalled on the template DNA. One attractive model of rescue relies on homologous recombination to establish a new fork via PriA-mediated loading of the DnaB replicative helicase at D loop intermediates. We provide genetic and biochemical evidence that PriA helicase activity can also rescue a stalled fork by an alternative mechanism that requires manipulation of the fork before loading of DnaB on the lagging strand template. This direct rescue depends on RecG, which unwinds forks and Holliday junctions and interconverts these structures. The combined action of PriA and RecG helicase activities may thus avoid the potential dangers of rescue pathways involving fork breakage and recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号