首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Natural killer T (NKT) cells modulate immune responses against pathogens and tumours, as well as immunological tolerance. We show here that CYLD, a tumour suppressor with deubiquitinase function, has a pivotal and cell‐intrinsic function in NKT cell development. Unlike other known NKT regulators, CYLD is dispensable for intrathymic NKT cell maturation but is obligatory for the survival of immature NKT cells. Interestingly, CYLD deficiency impairs the expression of ICOS, a costimulatory molecule required for the survival and homeostasis of NKT cells, and this molecular defect is associated with attenuated response to an NKT‐survival cytokine, IL‐7, due to reduced expression of IL‐7 receptor. We show, for the first time, that IL‐7 induces the expression of ICOS in NKT cells, which is largely dependent on CYLD. Interestingly, loss of CYLD causes constitutive NF‐κB activation in developing NKT cells, which contributes to their defective IL‐7 response and attenuated ICOS expression. These findings establish CYLD as a critical regulator of NKT cell development and provide molecular insights into this novel function of CYLD.  相似文献   

2.
In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10 nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells.  相似文献   

3.
Real-time monitoring of actin polymerization in living cells is beneficial for characterizing cellular activities such as migration, proliferation, and death. We developed new bioluminescence-based probe proteins that enable the monitoring of actin polymerization in living cells. Unlike other ordinary split luciferase probes, our probes were incorporated in endogenous actin filament that enabled it to measure the actin polymerization quantitatively. The probe proteins exhibited a dose-responsive decrease in photon emission intensity in response to the filamentous (F)-actin-disrupting agent latrunculin A. This technique has a high sensitivity with a high signal-to-noise ratio and is nontoxic compared with other methods of monitoring actin polymerization in living cells. Using this technique, we succeeded in monitoring the F-actin level in living cells during apoptosis progression induced by UV irradiation continuously for 12 h. F-actin was transiently upregulated after UV irradiation. Since UV-induced cell death was enhanced by treatment with latrunculin A during the period which F-actin is increased, transient upregulation of F-actin after UV is likely a protective reaction against UV-induced cell death. Our novel technique is an effective tool for investigating actin polymerization in living cells.  相似文献   

4.
Porous hydrogels provide an excellent environment for cell growth and tissue regeneration, with high permeability for oxygen, nutrients, and other water‐soluble metabolites through their high water‐content matrix. The ability to image three‐dimensional (3D) cell growth is crucial for understanding and studying various cellular activities in 3D context, particularly for designing new tissue engineering scaffold, but it is still challenging to study cell‐biomaterial interfaces with high resolution imaging. We demonstrate using focused ion beam (FIB) milling, electron imaging, and associated microanalysis techniques that novel 3D characterizations can be performed effectively on cells growing inside 3D hydrogel scaffold. With FIB‐tomography, the porous microstructures were revealed at nanometer resolution, and the cells grown inside. The results provide a unique 3D measurement of hydrogel porosity, as compared with those from porosimetry, and offer crucial insights into material factors affecting cell proliferation at specific regions within the scaffold. We also proved that high throughput correlative imaging of cell growth is viable through a silicon membrane based environment. The proposed approaches, together with the protocols developed, provide a unique platform for analysis of the microstructures of novel biomaterials, and for exploration of their interactions with the cells as well. Biotechnol. Bioeng. 2013; 110: 318–326. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Cell sorting coupled with single‐cell genomics is a powerful tool to circumvent cultivation of microorganisms and reveal microbial ‘dark matter’. Single‐cell Raman spectra (SCRSs) are label‐free biochemical ‘fingerprints’ of individual cells, which can link the sorted cells to their phenotypic information and ecological functions. We employed a novel Raman‐activated cell ejection (RACE) approach to sort single bacterial cells from a water sample in the Red Sea based on SCRS. Carotenoids are highly diverse pigments and play an important role in phototrophic bacteria, giving strong and distinctive Raman spectra. Here, we showed that individual carotenoid‐containing cells from a Red Sea sample were isolated based on the characteristic SCRS. RACE‐based single‐cell genomics revealed putative novel functional genes related to carotenoid and isoprenoid biosynthesis, as well as previously unknown phototrophic microorganisms including an unculturable Cyanobacteria spp. The potential of Raman sorting coupled to single‐cell genomics has been demonstrated.  相似文献   

6.
7.
8.
GaAs has excellent optical, electrical, and mechanical properties and shows promise to be used in the fabrication of novel devices. However, the unprotected GaAs surface can release heavy metal compounds such as AsOx, which are toxic to living cells. A promising approach to reduce or eliminate this release relies on the passivation of the GaAs surface using different chemical approaches. In this work, we compared three different passivation methods aimed at enhancing the viability of cells on GaAs. Protective layers composed of self-assembled alkyl thiols, polypeptides, thick polymer layers, and shells of polyelectrolytes were tested. We confirmed that the GaAs surface can be made biocompatible for several days based on in vitro tests with HeLa and KB cells. In addition, we compared the cell spreading behavior on the GaAs substrates modified by different chemical approaches. Our results suggest that when the toxicity of the GaAs surface is reduced or eliminated, the cells’viability and spreading depend on the chemical and topographical nature of the surface.  相似文献   

9.
Mammalian interphase chromosomes fold into a multitude of loops to fit the confines of cell nuclei, and looping is tightly linked to regulated function. Chromosome conformation capture (3C) technology has significantly advanced our understanding of this structure‐to‐function relationship. However, all 3C‐based methods rely on chemical cross‐linking to stabilize spatial interactions. This step remains a “black box” as regards the biases it may introduce, and some discrepancies between microscopy and 3C studies have now been reported. To address these concerns, we developed “i3C”, a novel approach for capturing spatial interactions without a need for cross‐linking. We apply i3C to intact nuclei of living cells and exploit native forces that stabilize chromatin folding. Using different cell types and loci, computational modeling, and a methylation‐based orthogonal validation method, “TALE‐iD”, we show that native interactions resemble cross‐linked ones, but display improved signal‐to‐noise ratios and are more focal on regulatory elements and CTCF sites, while strictly abiding to topologically associating domain restrictions.  相似文献   

10.
In this study, the collapse temperature was determined using the freeze‐drying microscopy (FDM) method for a variety of cell culture medium‐based solutions (with 0.05–0.8 M trehalose) that are important for long‐term stabilization of living cells in the dry state at ambient temperature (lyopreservation) by freeze‐drying. Being consistent with what has been reported in the literature, the collapse temperature of binary water‐trehalose solutions was found to be similar to the glass transition temperature (Tg ~ ?30°C) of the maximally freeze‐concentrated trehalose solution (~80 wt% trehalose) during the freezing step of freeze‐drying, regardless of the initial concentration of trehalose. However, the effect of the initial trehalose concentration on the collapse temperature of the cell culture medium‐based trehalose solutions was identified to be much more significant, particularly when the trehalose concentration is less than 0.2 M (the collapse temperature can be as low as ?65°C). We also determined that cell density from 1 to 10 million cells/mL and ice seeding at high subzero temperatures (?4 and ?7°C) have negligible impact on the solution collapse temperature. However, ice seeding does significantly affect the ice crystal morphology formed during the freezing step and therefore the drying rate. Finally, bulking agents (mannitol) could significantly affect the collapse temperature only when trehalose concentration is low (<0.2 M). However, improving the collapse temperature by using a high concentration of trehalose might be preferred to the addition of bulking agents in the solutions for freeze‐drying of living cells. We further confirmed the applicability of the collapse temperature measured with small‐scale (2 µL) samples using the FDM system to freeze‐drying of large‐scale (1 mL) samples using scanning electron microscopy (SEM) data. Taken together, the results reported in this study should provide useful guidance to the development of optimal freeze‐drying protocols for lyopreservation of living cells at ambient temperature for easy maintenance and convenient wide distribution to end users, which is important to the eventual success of modern cell‐based medicine. Biotechnol. Bioeng. 2010;106: 247–259. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
Biomineralization is the process in which soft organic tissues use minerals to produce shells, skeletons and teeth for various functions such as protection and physical support. The ability of the cells to control the time and place of crystal nucleation as well as crystal orientation and stiffness is far beyond the state-of-the art of human technologies. Thus, understanding the biological control of biomineralization will promote our understanding of embryo development as well as provide novel approaches for material engineering. Sea urchin larval skeletogenesis offers an excellent platform for functional analyses of both the molecular control system and mineral uptake and deposition. Here we describe the current understanding of the genetic, molecular and cellular processes that underlie sea urchin larval skeletogenesis. We portray the regulatory genes that define the specification of the skeletogenic cells and drive the various morphogenetic processes that occur in the skeletogenic lineage, including: epithelial to mesenchymal transition, cell migration, spicule cavity formation and mineral deposition into the spicule cavity. We describe recent characterizations of the size, motion and mineral concentration of the calcium-bearing vesicles in the skeletogenic cells. We review the distinct specification states within the skeletogenic lineage that drive localized skeletal growth at the tips of the spicules. Finally, we discuss the surprising similarity between the regulatory network and cellular processes that drive sea urchin skeletogenesis and those that control vertebrate vascularization. Overall, we illustrate the novel insights on the biological regulation and evolution of biomineralization, gained from studies of the sea urchin larval skeletogenesis.  相似文献   

12.
Cell‐free protein synthesis (CFPS) is a valuable method for the fast expression of difficult‐to‐express proteins as well as posttranslationally modified proteins. Since cell‐free systems circumvent possible cytotoxic effects caused by protein overexpression in living cells, they significantly enlarge the scale and variety of proteins that can be characterized. We demonstrate the high potential of eukaryotic CFPS to express various types of membrane proteins covering a broad range of structurally and functionally diverse proteins. Our eukaryotic cell‐free translation systems are capable to provide high molecular weight membrane proteins, fluorescent‐labeled membrane proteins, as well as posttranslationally modified proteins for further downstream analysis.  相似文献   

13.
A Ponto-Caspian amphipod Dikerogammarus haemobaphes has recently invaded European waters. In the recipient area, it encountered Dreissena polymorpha , a habitat-forming bivalve, co-occurring with the gammarids in their native range. We assumed that interspecific interactions between these two species, which could develop during their long-term co-evolution, may affect the gammarid behaviour in novel areas. We examined the gammarid ability to select a habitat containing living mussels and searched for cues used in that selection. We hypothesized that they may respond to such traits of a living mussel as byssal threads, activity (e.g. valve movements, filtration) and/or shell surface properties. We conducted the pairwise habitat-choice experiments in which we offered various objects to single gammarids in the following combinations: (1) living mussels versus empty shells (the general effect of living Dreissena ); (2) living mussels versus shells with added byssal threads and shells with byssus versus shells without it (the effect of byssus); (3) living mussels versus shells, both coated with nail varnish to neutralize the shell surface (the effect of mussel activity); (4) varnished versus clean living mussels (the effect of shell surface); (5) varnished versus clean stones (the effect of varnish). We checked the gammarid positions in the experimental tanks after 24 h. The gammarids preferred clean living mussels over clean shells, regardless of the presence of byssal threads under the latter. They responded to the shell surface, exhibiting preferences for clean mussels over varnished individuals. They were neither affected by the presence of byssus nor by mussel activity. The ability to detect and actively select zebra mussel habitats may be beneficial for D. haemobaphes and help it establish stable populations in newly invaded areas.  相似文献   

14.
Extrusion‐based bio‐printing has great potential as a technique for manipulating biomaterials and living cells to create three‐dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion‐based bio‐printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio‐printing and manipulation of multiple materials and cells in bio‐printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion‐based bio‐printing for scaffold fabrication, focusing on the prior‐printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to‐date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi‐materials/cells manipulation, and process‐induced cell damage in extrusion‐based bio‐printing. The key issue and challenges for extrusion‐based bio‐printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio‐printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio‐printing. The address of these challenges will significantly enhance the capability of extrusion‐based bio‐printing.  相似文献   

15.
The unique properties of mammalian cells make them valuable for a variety of applications in medicine, industry, and diagnostics. However, the utility of such cells is restricted due to the difficulty in storing them non‐frozen for an extended time and still maintaining their stability and responsiveness. In order to extend the active life span of a mammalian biosensor cell line at room and refrigerated temperatures, we have over expressed genes that are reported to provide protection from apoptosis, stress, or oxidation. We demonstrated that over expression of genes from the extremophile, Artemia franciscana, as well as GADD45β, extends room‐temperature storage of fully active cells 3.5‐fold, while over production of several anti‐apoptotic proteins extended 4°C storage 2‐ to 3‐fold. Methodologies like these that improve the stability of mammalian‐cell‐based technologies in the absence of freezers may enable widespread use of these tools in applications that have been considered impractical based solely on limited storage characteristics. Biotechnol. Bioeng. 2010; 106: 474–481. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame‐to‐frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB‐based image processing package well‐suited to quantitative analysis of high‐throughput live‐cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine‐learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame‐to‐frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell‐cycle dynamics in bacteria as well as cell‐contact mediated phenomena. This package has a range of built‐in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution.  相似文献   

17.
Centrosomes are the main microtubule‐organizing centers of animal cells. Although centrosome aberrations are common in tumors, their consequences remain subject to debate. Here, we studied the impact of structural centrosome aberrations, induced by deregulated expression of ninein‐like protein (NLP), on epithelial spheres grown in Matrigel matrices. We demonstrate that NLP‐induced structural centrosome aberrations trigger the escape (“budding”) of living cells from epithelia. Remarkably, all cells disseminating into the matrix were undergoing mitosis. This invasive behavior reflects a novel mechanism that depends on the acquisition of two distinct properties. First, NLP‐induced centrosome aberrations trigger a re‐organization of the cytoskeleton, which stabilizes microtubules and weakens E‐cadherin junctions during mitosis. Second, atomic force microscopy reveals that cells harboring these centrosome aberrations display increased stiffness. As a consequence, mitotic cells are pushed out of mosaic epithelia, particularly if they lack centrosome aberrations. We conclude that centrosome aberrations can trigger cell dissemination through a novel, non‐cell‐autonomous mechanism, raising the prospect that centrosome aberrations contribute to the dissemination of metastatic cells harboring normal centrosomes.  相似文献   

18.
The tumour microenvironment (TME) plays a pivotal role in tumour fate determination. The TME acts together with the genetic material of tumour cells to determine their initiation, metastasis and drug resistance. Stromal cells in the TME promote the growth and metastasis of tumour cells by secreting soluble molecules or exosomes. The abnormal microenvironment reduces immune surveillance and tumour killing. The TME causes low anti‐tumour drug penetration and reactivity and high drug resistance. Tumour angiogenesis and microenvironmental hypoxia limit the drug concentration within the TME and enhance the stemness of tumour cells. Therefore, modifying the TME to effectively attack tumour cells could represent a comprehensive and effective anti‐tumour strategy. Normal cells, such as stem cells and immune cells, can penetrate and disrupt the abnormal TME. Reconstruction of the TME with healthy cells is an exciting new direction for tumour treatment. We will elaborate on the mechanism of the TME to support tumours and the current cell therapies for targeting tumours and the TME—such as immune cell therapies, haematopoietic stem cell (HSC) transplantation therapies, mesenchymal stem cell (MSC) transfer and embryonic stem cell‐based microenvironment therapies—to provide novel ideas for producing breakthroughs in tumour therapy strategies.  相似文献   

19.
Marine organisms inhabiting soft‐bottom sediment are particularly susceptible to rapid sedimentation and erosion events. This article presents a novel example of fossilized intestine casts located within closed bivalve shells in relation to rapid sedimentation event from the Pleistocene sediment of the Oga Peninsula, Akita Prefecture, northern Japan. The mollusc shells were loosely packed in well‐sorted medium‐grained to coarse‐grained sandstone associated with low‐angle trough cross‐stratification. The closed shells of Glycymeris yessoensis were present in the shell concentration. The internal parts of the shells were almost hollow, being partially filled with yellow fine‐grained clay minerals (median grain size = 30.63 μm). The characteristic material within the shells clearly differed from the surrounding sediment, which consisted of coarse‐grained felsic minerals (median grain size = 449.73 μm). Furthermore, the yellow fine‐grained clay minerals within the shells were tube‐shaped, and located near the posterior adductor scar. On the basis of anatomical observation of living Glycymeris, we confirmed that part of the intestine and the anus are also placed near the posterior adductor muscle. Therefore, the yellow fine‐grained clay minerals within the shells represent the fossil remains of particles ingested by the G. yessoensis individual through suspension‐feeding, and the tube‐shaped material is interpreted as being fossilized intestine cast. These results suggest that G. yessoensis individuals were buried alive, as rapid sedimentation prevented ejection and destruction of the filling material of intestine. The presence of intestine cast within the mollusc fossils can be used for recognizing rapid sedimentation.  相似文献   

20.
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo‐) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro‐) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high‐throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome‐scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号