首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross‐links, or caps the filament ends have been identified and the actin cross‐linker α‐actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α‐actinin is believed to be required for infection. To better understand the role of α‐actinin in the infectious process we have determined the solution structure of the C‐terminal calmodulin‐like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium‐binding EF‐hand motifs, connected with a mobile linker. Proteins 2016; 84:461–466. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
3.
Telomere shortening follows a developmentally regulated process that leads to replicative senescence of dividing cells. However, whether telomere changes are involved in postmitotic cell function and aging remains elusive. In this study, we discovered that the level of the TRF2 protein, a key telomere‐capping protein, declines in human skeletal muscle over lifetime. In cultured human myotubes, TRF2 downregulation did not trigger telomere dysfunction, but suppressed expression of the mitochondrial Sirtuin 3 gene (SIRT3) leading to mitochondrial respiration dysfunction and increased levels of reactive oxygen species. Importantly, restoring the Sirt3 level in TRF2‐compromised myotubes fully rescued mitochondrial functions. Finally, targeted ablation of the Terf2 gene in mouse skeletal muscle leads to mitochondrial dysfunction and sirt3 downregulation similarly to those of TRF2‐compromised human myotubes. Altogether, these results reveal a TRF2‐SIRT3 axis controlling muscle mitochondrial function. We propose that this axis connects developmentally regulated telomere changes to muscle redox metabolism.  相似文献   

4.
After osmotic swelling, cell volume is regulated by a process called regulatory volume decrease (RVD). Although actin cytoskeletons are known to play a regulatory role in RVD, it is not clear how actin‐binding proteins are involved in the RVD process. In the present study, an involvement of an actin‐binding protein, α‐actinin‐4 (ACTN4), in RVD was examined in human epithelial HEK293T cells. Overexpression of ACTN4 significantly facilitated RVD, whereas siRNA‐mediated downregulation of endogenous ACTN4 suppressed RVD. When the cells were subjected to hypotonic stress, the content of ACTN4 increased in a 100,000 × g pellet, which was sensitive to cytochalasin D pretreatment. Protein overlay assays revealed that ABCF2, a cytosolic member of the ABC transporter superfamily, is a binding partner of ACTN4. The ACTN4‐ABCF2 interaction was markedly enhanced by hypotonic stimulation and required the NH2‐terminal region of ABCF2. Overexpression of ABCF2 suppressed RVD, whereas downregulation of ABCF2 facilitated RVD. We then tested whether ABCF2 has a suppressive effect on the activity of volume‐sensitive outwardly rectifying anion channel (VSOR), which is known to mediate Cl? efflux involved in RVD, because another ABC transporter member, CFTR, was shown to suppress VSOR activity. Whole‐cell VSOR currents were largely reduced by overexpression of ABCF2 and markedly enhanced by siRNA‐mediated depletion of ABCF2. Thus, the present study indicates that ACTN4 acts as an enhancer of RVD, whereas ABCF2 acts as a suppressor of VSOR and RVD, and suggests that a swelling‐induced interaction between ACTN4 and ABCF2 prevents ABCF2 from suppressing VSOR activity in the human epithelial cells. J. Cell. Physiol. 227: 3498–3510, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
6.
Chiral sulfoxides/N‐oxides (R)‐ 1 and (R,R)‐ 2 are effective chiral promoters in the enantioselective allylation of α‐keto ester N‐benzoylhydrazone derivatives 3a , 3b , 3c , 3d , 3e , 3f , 3g to generate the corresponding N‐benzoylhydrazine derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a , 4b were subsequently treated with SmI2, and the resulting amino esters 5a , 5b with LiOH to obtain quaternary α‐substituted α‐allyl α‐amino acids 6a , 6b , whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. Chirality 25:529–540, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Pulmonary fibrosis (PF) is chronic and irreversible damage to the lung characterized by fibroblast activation and matrix deposition. Although recently approved novel anti‐fibrotic agents can improve the lung function and survival of patients with PF, the overall outcomes remain poor. In this study, a novel imidazopurine compound, 3‐(2‐chloro‐6‐fluorobenzyl)‐1,6,7‐trimethyl‐1H‐imidazo[2,1‐f]purine‐2,4(3H,8H)‐dione (IM‐1918), markedly inhibited transforming growth factor (TGF)‐β‐stimulated reporter activity and reduced the expression of representative fibrotic markers, such as connective tissue growth factor, fibronectin, collagen and α‐smooth muscle actin, on human lung fibroblasts. However, IM‐1918 neither decreased Smad‐2 and Smad‐3 nor affected p38MAPK and JNK. Instead, IM‐1918 reduced Akt and extracellular signal‐regulated kinase 1/2 phosphorylation increased by TGF‐β. Additionally, IM‐1918 inhibited the phosphorylation of fibroblast growth factor receptors 1 and 3. In a bleomycin‐induced murine lung fibrosis model, IM‐1918 profoundly reduced fibrotic areas and decreased collagen and α‐smooth muscle actin accumulation. These results suggest that IM‐1918 can be applied to treat lung fibrosis.  相似文献   

8.
9.
A wide variety of cellular processes and signaling events are regulated by the proteolytic enzyme γ‐secretase. Notch‐1 is one of the substrates of γ‐secretase and its role in the regulation of muscle differentiation has been well described. Importantly, besides Notch‐1, a number of proteins have been identified to undergo proteolysis by γ‐secretase. To date, the specific role of γ‐secretase during embryonic skeletal muscle differentiation has not been studied. Therefore, we address this question through the analysis of in vitro grown chick myogenic cells during the formation of multinucleated myotubes. The γ‐secretase inhibitor DAPT (N‐N[‐(3,5‐Difluorophenacetyl‐l ‐alanyl)]‐S‐328 phenylglycine‐t‐butyl‐ester) induces muscle hypertrophy. Knockdown of Notch‐1 using siRNA specific to chick shows no significant effect in myotube size, suggesting that γ‐secretase‐dependent effects on muscle hypertrophy in chick myogenic cells are Notch‐1‐independent. We also investigate the effects of γ‐secretase inhibition in the whole proteomic profile of chick myogenic cells. We identified 276 differentially expressed proteins from Label‐free proteomic approach. Data overview of interaction network obtained from STRING show that after γ‐secretase inhibition cells exhibited imbalance in protein metabolism, cytoskeleton/adhesion, and Sonic Hedgehog signaling. The collection of these results provides new insights into the role of γ‐secretase in skeletal muscle hypertrophy.  相似文献   

10.
N‐cadherin is a member of the Ca2+‐dependent cell adhesion molecules and plays an important role in the assembly of the adherens junction in chicken cardiomyocytes. In addition to being present at the cell‐cell junction, N‐cadherin is associated with costameres in extrajunctional regions. The significance of the N‐cadherin‐associated costameres and whether catenins are components of costameres in chicken cardiomyocytes are not known. In this study, double‐labeling immunofluorescence microscopy was used to determine the extrajunctional distribution of both N‐cadherin and its cytoplasmic associated proteins, α‐ and β‐catenins, and their relationship to myofibrillar Z‐disc α‐actinin. N‐cadherin, α‐, and β‐catenins were all found to be present at the extrajunctional region and, in some cases, were codistributed with myofibrillar α‐actinin exhibiting a periodic staining pattern. Confocal microscopy confirmed that both N‐cadherin and β‐catenin colocalized with peripheral myofibrillar α‐actinin on the dorsal surface of cardiomyocytes as components of the costameres. Intracellular application of antibodies specific for the cytoplasmic portions of N‐cadherin, α‐, and β‐catenin, either by electroporation or microinjection, resulted in myofibril disorganization and disassembly. These results suggest the existence of N‐cadherin/catenin‐based costameres in the dorsal surface of cultured chicken cardiomyocytes in addition to the integrin/vinculin‐based costameres found in the ventral surface and indicate that the former set of costameres is essential for cardiac myofibrillogenesis. J. Cell. Biochem. 75:93–104, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

11.
Clenbuterol, a β2‐adrenergic agonist, increases the hypertrophy of skeletal muscle. Insulin‐like growth factor (IGF) is reported to work as a potent positive regulator in the clenbuterol‐induced hypertrophy of skeletal muscles. However, the precise regulatory mechanism for the hypertrophy of skeletal muscle induced by clenbuterol is unknown. Myostatin, a member of the TGFβ super family, is a negative regulator of muscle growth. The aim of the present study is to elucidate the function of myostatin and IGF in the hypertrophy of rat masseter muscle induced by clenbuterol. To investigate the function of myostatin and IGF in regulatory mechanism for the clenbuterol‐induced hypertrophy of skeletal muscles, we analysed the expression of myostatin and phosphorylation levels of myostatin and IGF signaling components in the masseter muscle of rat to which clenbuterol was orally administered for 21 days. Hypertrophy of the rat masseter muscle was induced between 3 and 14 days of oral administration of clenbuterol and was terminated at 21 days. The expression of myostatin and the phosphorylation of smad2/3 were elevated at 21 days. The phosphorylation of IGF receptor 1 (IGFR1) and akt1 was elevated at 3 and 7 days. These results suggest that myostatin functions as a negative regulator in the later stages in the hypertrophy of rat masseter muscle induced by clenbuterol, whereas IGF works as a positive regulator in the earlier stages. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Biosynthesis of asymmetric carotenoids such as α‐carotene and lutein in plants and green algae involves the two enzymes lycopene β‐cyclase (LCYB) and lycopene ε‐cyclase (LCYE). The two cyclases are closely related and probably resulted from an ancient gene duplication. While in most plants investigated so far the two cyclases are encoded by separate genes, prasinophyte algae of the order Mamiellales contain a single gene encoding a fusion protein comprised of LCYB, LCYE and a C‐terminal light‐harvesting complex (LHC) domain. Here we show that the lycopene cyclase fusion protein from Ostreococcus lucimarinus catalyzed the simultaneous formation of α‐carotene and β‐carotene when heterologously expressed in Escherichia coli. The stoichiometry of the two products in E. coli could be altered by gradual truncation of the C‐terminus, suggesting that the LHC domain may be involved in modulating the relative activities of the two cyclase domains in the algae. Partial deletions of the linker region between the cyclase domains or replacement of one or both cyclase domains with the corresponding cyclases from the green alga Chlamydomonas reinhardtii resulted in pronounced shifts of the α‐carotene‐to‐β‐carotene ratio, indicating that both the relative activities of the cyclase domains and the overall structure of the fusion protein have a strong impact on the product stoichiometry. The possibility to tune the product ratio of the lycopene cyclase fusion protein from Mamiellales renders it useful for the biotechnological production of the asymmetric carotenoids α‐carotene or lutein in bacteria or fungi.  相似文献   

13.
α‐Synuclein is a synaptic modulatory protein implicated in the pathogenesis of Parkinson disease. The precise functions of this small cytosolic protein are still under investigation. α‐Synuclein has been proposed to regulate soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor (SNARE) proteins involved in vesicle fusion. Interestingly, α‐synuclein fails to interact with SNARE proteins in conventional protein‐binding assays, thus suggesting an indirect mode of action. As the structural and functional properties of both α‐synuclein and the SNARE proteins can be modified by arachidonic acid, a common lipid regulator, we analysed this possible tripartite link in detail. Here, we show that the ability of arachidonic acid to stimulate SNARE complex formation and exocytosis can be controlled by α‐synuclein, both in vitro and in vivo. α‐Synuclein sequesters arachidonic acid and thereby blocks the activation of SNAREs. Our data provide mechanistic insights into the action of α‐synuclein in the modulation of neurotransmission.  相似文献   

14.
α-Actinin-3 (ACTN3) has been proposed to regulate skeletal muscle differentiation and hypertrophy through its interaction with the signalling protein calcineurin. Since the inhibition of calcineurin potentiates the production of testosterone, we hypothesized that α-actinin-3 deficiency (predicted from the ACTN3 XX genotype) may influence serum levels of testosterone of athletes. Objective: To investigate the association of ACTN3 gene R577X polymorphism with resting testosterone levels in athletes. Methods: A total of 209 elite Russian athletes from different sports (119 males, 90 females) were genotyped for ACTN3 gene R577X polymorphism by real-time PCR. Resting testosterone was examined in serum of athletes using enzyme immunoassay. Results: The mean testosterone levels were significantly higher in both males and females with the ACTN3 R allele than in XX homozygotes (males: RR: 24.9 (5.7), RX: 21.8 (5.5), XX: 18.6 (4.9) ng · mL-1, P = 0.0071; females: RR: 1.43 (0.6), RX: 1.21 (0.71), XX: 0.79 (0.66) ng · mL-1, P = 0.0167). Conclusions: We found that the ACTN3 R allele was associated with high levels of testosterone in athletes, and this may explain, in part, the association between the ACTN3 RR genotype, skeletal muscle hypertrophy and power athlete status.  相似文献   

15.
Mitochondrial dysfunction plays a key pathogenic role in aging skeletal muscle resulting in significant healthcare costs in the developed world. However, there is no pharmacologic treatment to rapidly reverse mitochondrial deficits in the elderly. Here, we demonstrate that a single treatment with the mitochondrial‐targeted peptide SS‐31 restores in vivo mitochondrial energetics to young levels in aged mice after only one hour. Young (5 month old) and old (27 month old) mice were injected intraperitoneally with either saline or 3 mg kg?1 of SS‐31. Skeletal muscle mitochondrial energetics were measured in vivo one hour after injection using a unique combination of optical and 31P magnetic resonance spectroscopy. Age‐related declines in resting and maximal mitochondrial ATP production, coupling of oxidative phosphorylation (P/O), and cell energy state (PCr/ATP) were rapidly reversed after SS‐31 treatment, while SS‐31 had no observable effect on young muscle. These effects of SS‐31 on mitochondrial energetics in aged muscle were also associated with a more reduced glutathione redox status and lower mitochondrial H2O2 emission. Skeletal muscle of aged mice was more fatigue resistant in situ one hour after SS‐31 treatment, and eight days of SS‐31 treatment led to increased whole‐animal endurance capacity. These data demonstrate that SS‐31 represents a new strategy for reversing age‐related deficits in skeletal muscle with potential for translation into human use.  相似文献   

16.
Skeletal myopathy is a hallmark of heart failure (HF) and has been associated with a poor prognosis. HF and other chronic degenerative diseases share a common feature of a stressed system: sympathetic hyperactivity. Although beneficial acutely, chronic sympathetic hyperactivity is one of the main triggers of skeletal myopathy in HF. Considering that β2‐adrenoceptors mediate the activity of sympathetic nervous system in skeletal muscle, we presently evaluated the contribution of β2‐adrenoceptors for the morphofunctional alterations in skeletal muscle and also for exercise intolerance induced by HF. Male WT and β2‐adrenoceptor knockout mice on a FVB genetic background (β2KO) were submitted to myocardial infarction (MI) or SHAM surgery. Ninety days after MI both WT and β2KO mice presented to cardiac dysfunction and remodelling accompanied by significantly increased norepinephrine and epinephrine plasma levels, exercise intolerance, changes towards more glycolytic fibres and vascular rarefaction in plantaris muscle. However, β2KO MI mice displayed more pronounced exercise intolerance and skeletal myopathy when compared to WT MI mice. Skeletal muscle atrophy of infarcted β2KO mice was paralleled by reduced levels of phosphorylated Akt at Ser 473 while increased levels of proteins related with the ubiquitin‐–proteasome system, and increased 26S proteasome activity. Taken together, our results suggest that lack of β2‐adrenoceptors worsen and/or anticipate the skeletal myopathy observed in HF.  相似文献   

17.
18.
The troponin complex, which consists of three regulatory proteins (troponin C, troponin I, and troponin T), is known to regulate muscle contraction in skeletal and cardiac muscle, but its role in smooth muscle remains controversial. Troponin T3 (TnnT3) is a fast skeletal muscle troponin believed to be expressed only in skeletal muscle cells. To determine the in vivo function and tissue‐specific expression of Tnnt3, we obtained the heterozygous Tnnt3+/flox/lacZ mice from Knockout Mouse Project (KOMP) Repository. Tnnt3lacZ/+ mice are smaller than their WT littermates throughout development but do not display any gross phenotypes. Tnnt3lacZ/lacZ embryos are smaller than heterozygotes and die shortly after birth. Histology revealed hemorrhagic tissue in Tnnt3lacZ/lacZ liver and kidney, which was not present in Tnnt3lacZ/+ or WT, but no other gross tissue abnormalities. X‐gal staining for Tnnt3 promoter‐driven lacZ transgene expression revealed positive staining in skeletal muscle and diaphragm and smooth muscle cells located in the aorta, bladder, and bronchus. Collectively, these findings suggest that troponins are expressed in smooth muscle and are required for normal growth and breathing for postnatal survival. Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional‐inducible gene deletion approach genesis 51:667–675. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Summary: Gene therapeutic approaches to cure genetic diseases require tools to express the rescuing gene exclusively within the affected tissues. Viruses are often chosen as gene transfer vehicles but they have limited capacity for genetic information to be carried and transduced. In addition, to avoid off‐target effects the therapeutic gene should be driven by a tissue‐specific promoter in order to ensure expression in the target organs, tissues, or cell populations. The larger the promoter, the less space will be left for the respective gene. Thus, there is a need for small but tissue‐specific promoters. Here, we describe a compact unc45b promoter fragment of 195 bp that retains the ability to drive gene expression exclusively in skeletal and cardiac muscle in zebrafish and mouse. Remarkably, the described unc45b promoter fragment not only drives muscle‐specific expression but presents heat‐shock inducibility, allowing a temporal and spatial quantity control of (trans)gene expression. Here, we demonstrate that the transgenic expression of the smyd1b gene driven by the unc45b promoter fragment is able to rescue the embryonically lethal heart and skeletal muscle defects in smyd1b‐deficient flatline mutant zebrafish. Our findings demonstrate that the described muscle‐specific unc45b promoter fragment might be a valuable tool for the development of genetic therapies in patients suffering from myopathies. genesis 54:431–438, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.  相似文献   

20.
Bacteria degrading α‐(1→3)‐glucan were sought in the gut of fungivorous insects feeding on fruiting bodies of a polypore fungus Laetiporus sulphureus, which are rich in this polymer. One isolate, from Diaperis boleti, was selected in an enrichment culture in the glucan‐containing medium. The bacterium was identified as Paenibacillus sp. based on the results of the ribosomal DNA analysis. The Paenibacillus showed enzyme activity of 4.97 mU/cm3 and effectively degraded fungal α‐(1→3)‐glucan, releasing nigerooligosaccharides and a trace amount of glucose. This strain is the first reported α‐(1→3)‐glucan‐degrading microorganism in the gut microbiome of insects inhabiting fruiting bodies of polypore fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号