首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Potassium superoxide dissolved in dry dimethyl sulfoxide effects rapid deesterification of ethyl hexadecanoate and of dilauroyl phosphatidyl choline. The reaction with ethyl hexadecanoate is reversible, having an apparent equilibrium constant of 0.4. It is proposed that some of the deleterious effects on biological membranes which have been atributed to oxidation by superoxide may actually be the result of deesterification by superoxide acting as a nucleophile.  相似文献   

3.
A fluorescent analogue, palmitoyl-?CoA was shown to have a fluorescence lifetime (19.5 nsec.), polarization and absorption and emission characteristics useful for studying interactions with enzymes and with model membranes. The fluorescence lifetime was found to be wavelength dependent. The analogue was a better inhibitor (50% inhibition at ~ 0.2 μM) than palmitoyl-CoA (50% inhibition at 0.5 μM) when bound to mitochondrial malate dehydrogenase (L-malate: NAD+ oxido reductase E.C.l.l.137). The fluorescence depolarization when bound to this enzyme was less than that observed for binding to bovine serum albumin suggesting some mobility of the chromophore while bound. The changes in polarization upon titration with phosphatidylcholine (egg) vesicles were consistent with a partition of palmitoyl-(1,N6etheno)CoA between vesicles and malate dehydrogenase. Such partition may have physiological consequences.  相似文献   

4.
The chemiluminescence associated with peroxidation of luminol in buffered aqueous solution is a complex process involving several intermediates. It can be inhibited by removal of oxygen from the incubation medium. Superoxide radical is both an intermediate in this reaction and an essential component in light-producing steps. The importance of O2? in propagating this reaction was shown by the inhibition of luminescence by superoxide dismutase. A mechanism was proposed which is consistent with the data. It appears likely that the diverse biological effects of peroxidases are largely due to the reactivities of these intermediates and products.  相似文献   

5.
Human neutrophils incubated with phorbol myristate acetate oxidized hemoglobin within the intact erythrocyte by a mechanism dependent on cell-cell contact but independent of phagocytosis. Spectrophotometric examination of the erythrocyte lysates revealed that the major component formed was methemoglobin along with small amounts of a species with spectral characteristics similar to choleglobin. Methemoglobin formation was directly related to the neutrophil concentration and the time of incubation. The addition of superoxide dismutase or catalase modestly inhibited the formation of methemoglobin, while a combination of the enzymes provided the most dramatic protection. Methemoglobin of hydroxyl radical or hypochlorous acid scavengers. Apparently, either O2.- or H2O2 alone was capable of mediating methemoglobin formation in the intact erythrocyte. Maintenance of the intraerythrocytic hemoglobin in its oxygenated state or its derivatization to carbon monoxyhemoglobin markedly inhibited methemoglobin formation. Blockade of the anion channels in the intact erythrocyte with sulfonated stilbenes inhibited O2.- but not H2O2 from oxidizing intracellular hemoglobin. It appears that neutrophil-derived O2.- and H2O2 can cross the erythrocyte membrane through the anion channel or diffuse directly into the intracellular space and react with oxyhemoglobin or deoxyhemoglobin to form a mixture of hemoglobin oxidation products within the intact cell.  相似文献   

6.
7.
8.
Human neutrophils exposed to the soluble stimulus, phorbol myristate acetate, generate a flux of O2.- which can destroy human erythrocyte targets. Under optimal conditions, each neutrophil was capable of lysing almost 10 erythrocyte targets. Hemolysis was inhibited by exogenous copper-zinc or iron superoxide dismutase while neither heat-denatured enzyme nor albumin inhibited cytotoxicity. Although neutrophils can also generate H2O2, neither catalase nor a glutathione-glutathione peroxidase system inhibited hemolysis. Hemolysis was prevented by conversion of the hemoglobin to carbon monoxyhemoglobin, suggesting an intracellular mechanism of cytotoxicity. Conversion of hemoglobin to methemoglobin by nitrite treatment did not impair neutrophil-mediated hemolysis. However, nitrite-treated targets were not protected by superoxide dismutase, while exogenous catalase inhibited cytotoxicity, suggesting a potential role for H2O2 and methemoglobin. H2O2 and methemoglobin are known to interact to form an oxidant complex whose cytotoxic potential was underlined by the marked sensitivity of nitrite-treated cells to commercial H2O2. It is proposed that neutrophil-derived O2.- oxidizes oxyhemoglobin to generate methemoglobin and H2O2 which interact to form a cytotoxic complex capable of hemolyzing the erythrocyte target.  相似文献   

9.
10.
M Sette  M Paci  A Desideri  G Rotilio 《Biochemistry》1992,31(49):12410-12415
The binding of formate to bovine Cu,Zn superoxide dismutase has been studied by NMR spectroscopy. The distance between the copper ion and the proton covalently bound to formate has been evaluated from the broadening of the resonance of such proton. The effect on the copper-coordinated water molecule was evaluated from the bulk water relaxation effect by pulsed low-resolution NMR. The broadening of the resonance due to the formate carboxyl in the 13C NMR spectrum gave further indications about the carbon-copper distance thus providing information about the orientation of the formate ion. Changes of isotropically shifted resonances of the Cu,Co enzyme, where cobalt substitutes the native zinc, indicate that rearrangements of imidazoles of the liganding histidines occur upon binding. Transient NOE experiments gave indication of the proximity of the formate proton to resonance H of the NMR spectrum assigned to the imidazole proton of the copper-liganding His 118 of the active site. 2D NMR NOESY experiments made clear that no important rearrangement of the liganding histidines occurred in the presence of a saturating amount of formate. The absence of relevant changes of the intensity of NOE cross-peaks which are sensitive to interatomic distances in the active site revealed that only slight changes have occurred. Molecular graphics representation on the basis of all the information obtained allowed us to locate the formate in the proximity of the active site. The formate binding occurs via hydrogen bonds through the carboxylate ion and the NH groups of the side chains of Arg 141 which is external to the copper coordination sphere and faces the active site of the enzyme.  相似文献   

11.
In third-, fourth-, and fifth-instar larvae of the cabbage looper moth, Trichoplusia ni, the activities of the antioxidant enzymes, superoxide dismutase (SOD*), catalase (CAT), glutathione peroxidase (GPOX), and glutathione reductase (GR) were examined using 850 g supernatants of whole-body homogenates. The enzyme activities, expressed as units mg−1 protein min−1 at 25°C ranged as follows: SOD, 0.67-2.13 units; CAT, 180.5-307.5 units; GPOX, none detectable; and GR, 0.40-1.19 units. There was a similar pattern of changes for SOD and CAT activities with larval ontogeny, but not for GR. The cabbage looper apparently uses SOD and CAT to form a “defensive team” effective against endogenously produced superoxide anion (O2⪸). Glutathione may serve as an antioxidant for the destruction of any organic/lipid peroxides formed, and GSH oxidized to glutathione disulfide would be recycled by GR. Bioassays against pro-oxidant compounds exogenous sources of (O2⪸) show high sensitivity of mid-fifth instars to the linear furanocoumarin, 8-methoxypsoralen (xanthotoxin) primarily from photoactivation (320-380 nm), and auto-oxidation of the flavonoid, quercetin. The LC50s are 0.0004 and 0.0045% (w/w) concentration of xanthotoxin and quercetin, respectively. Both pro-oxidants have multiple target sites for lethal action and, in this context, the role of antioxidant enzymes is discussed.  相似文献   

12.
Development of toxic manifestations in rats under conditions of hyperoxia was accompanied by a significant lowering of the rat erythrocyte superoxide dismutase activity. The incubation of control rats hemolysate with hydrogen peroxide (10(-3)M) or with kumole peroxide (1.6 10(-4)M) also led to pronounced fall of the initial erythrocyte superoxide dismutase activity. As supposed, the lowering of the erythrocyte superoxide dismutase activity under hyperoxia could be due to the formation of peroxidation products.  相似文献   

13.
《Autophagy》2013,9(1):76-78
Mitochondria, which are a major source of intracellular reactive oxygen species (ROS), are extremely vulnerable to oxidative stress. We recently reported that selenite treatment of various glioma cells induced a non-apoptotic cell death accompanied by excessive mitophagy (selective autophagy of damaged mitochondria). Examination of various ROS revealed that the superoxide anion played a key role in selenite-induced mitochondrial damage, mitophagy and cell death. Treatment with superoxide generators (diquat and paraquat) was sufficient to trigger mitophagy in glioma cells. Small interfering RNA-mediated knockdown of ATG6 or ATG7 attenuated selenite-induced mitophagy and cell death, demonstrating that the mitophagic pathway contributes to selenite-induced cell death. The effect of selenite in glioma cells may thus provide an example of superoxide-mediated mitophagic cell death, i.e., cell death caused by excessive mitophagy.

Addendum to: Kim EH, Sohn S, Kwon HJ, Kim SU, Kim MJ, Lee SJ, Choi KS. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res 2007; 67:6314-24  相似文献   

14.
Kim EH  Choi KS 《Autophagy》2008,4(1):76-78
Mitochondria, which are a major source of intracellular reactive oxygen species (ROS), are extremely vulnerable to oxidative stress. We recently reported that selenite treatment of various glioma cells induced a non-apoptotic cell death accompanied by excessive mitophagy (selective autophagy of damaged mitochondria). Examination of various ROS revealed that the superoxide anion played a key role in selenite-induced mitochondrial damage, mitophagy and cell death. Treatment with superoxide generators (diquat and paraquat) was sufficient to trigger mitophagy in glioma cells. Small interfering RNA-mediated knockdown of ATG6 or ATG7 attenuated selenite-induced mitophagy and cell death, demonstrating that the mitophagic pathway contributes to selenite-induced cell death. The effect of selenite in glioma cells may thus provide an example of superoxide-mediated mitophagic cell death, i.e., cell death caused by excessive mitophagy.  相似文献   

15.
Demirci B  McKeown PP  Dvm UB 《BMB reports》2008,41(3):223-229
Reactive oxygen species (ROS) are implicated in vascular homeostasis. This study investigated whether O(2) (*-), the foundationmolecule of all ROS, regulates vasomotor function. Hence, vascular reactivity was measured using rat thoracic aortas exposed to an O(2) (*-) generator (pyrogallol) which dose-dependently regulated both alpha-adrenergic agonist-mediated contractility to phenylephrine and endothelium-dependent relaxations to acetylcholine. Pyrogallol improved and attenuated responses to acetylcholine at its lower (10 nM - 1 microM) and higher (10 - 100 microM) concentrations, respectively while producing the inverse effects with phenylephrine. The endothelial inactivation by L-NAME abolished acetylcholine-induced vasodilatations but increased phenylephrine and KCl-induced vasoconstrictions regardless of the pyrogallol dose used. Relaxant responses to sodium nitroprusside, a nitric oxide donor, were not affected by pyrogallol. Other ROS i.e. peroxynitrite and H(2)O(2) that may be produced during experiments did not alter vascular functions. These findings suggest that the nature of O(2) (*-)-evoked vascular function is determined by its local concentration and the presence of a functional endothelium.  相似文献   

16.
The sites of superoxide anion generation in higher plant mitochondria.   总被引:17,自引:0,他引:17  
An impermeable charged paramagnetic amphiphile 4-(dodecyl dimethyl ammonium)-1-oxyl-2,2,6,6-tetramethyl piperidine bromide can be used as a probe of membrane surface potentials. Upon energization of photosystem II or photosystems I + II in illuminated spinach chloroplast thylakoids, a decrease occurs in the potential of the outer surface of these membranes of up to 14 mV.  相似文献   

17.
Effects of superoxide on the erythrocyte membrane.   总被引:8,自引:0,他引:8  
  相似文献   

18.
1. The superoxide anion radical (O2-) reacts with ferricytochrome c to form ferrocytochrome c. No intermediate complexes are observable. No reaction could be detected between O2- and ferrocytochrome c. 2. At 20 degrees C the rate constant for the reaction at pH 4.7 to 6.7 is 1.4-10(6) M-1. S -1 and as the pH increases above 6.7 the rate constant steadily decreases. The dependence on pH is the same for tuna heart and horse heart cytochrome c. No reaction could be demonstrated between O2- and the form of cytochrome c which exists above pH approximately 9.2. The dependence of the rate constant on pH can be explained if cytochrome c has pKs of 7.45 and 9.2, and O2- reacts with the form present below pH 7.45 with k = 1.4-10(6) M-1 - S-1, the form above pH 7.45 with k = 3.0- 10(5) M-1 - S-1, and the form present above pH 9.2 with k = 0. 3. The reaction has an activation energy of 20 kJ mol-1 and an enthalpy of activation at 25 degrees C of 18 kJ mol-1 both above and below pH 7.45. It is suggested that O2- may reduce cytochrome c through a track composed of aromatic amino acids, and that little protein rearrangement is required for the formation of the activated complex. 4. No reduction of ferricytochrome c by HO2 radicals could be demonstrated at pH 1.2-6.2 but at pH 5.3, HO2 radicals oxidize ferrocytochrome c with a rate constant of about 5-10(5)-5-10(6) M-1 - S-1.  相似文献   

19.
In vivo administration of ecdysterone produced a decrease in cyclic AMP levels and cyclic AMP-binding protein activity in mouse liver 40 min after injection. These changes were accompanied by a concomitant decrease in cyclic AMP-dependent protein kinase. The effect on phosphoprotein phosphatase was the opposite pattern of that on protein kinase. These results support the idea that the cyclic AMP-protein kinase system may be involved in the heterophylic action of ecdysterone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号